Видовое постоянство числа хромосом, правило их преемственности. диплоидный и гаплоидный наборы хромосом

Содержание:

Клетка — это функциональная единица жизни. Простейшая степень организации органического вещества, способная гарантировать выполнение жизненно важных функций. А человеческое тело, например, является результатом «простого» объединения 30 миллионов миллионов ячеек..

И если каждая из этих клеток является частью головоломки нашего тела, то это благодаря генетическому материалу. К 30 000 генов, организованных в хромосомы, которые позволяют кодировать синтез всех тех белков, которые позволяют клетке выполнять свои физиологические функции и что, в конечном итоге, наше тело функционирует как идеально отлаженный механизм.

Что касается этих хромосом, высокоорганизованных структур ДНК и белков, которые содержат большую часть нашей генетической информации, мы много раз слышали, что наш геном состоит из 23 пар хромосом. Всего 46.

Но это не совсем так. В биологии нет черного и белого. Есть серые. Нюансы, которые показывают нам, что все, что связано с генетикой, подвержено изменениям, которые на самом деле делают эволюцию возможной. И в этом смысле сегодня мы подошли к разговору о различиях между двумя очень важными типами клеток: гаплоидными и диплоидными.

Мы рекомендуем вам прочитать: «4 различия между соматической клеткой и зародышевой клеткой»

Классификация гаплоидов

Общепринятой классификации гаплоидов не существует. Различными исследователями выделяются следующие группы:

  • Моноплоиды — гаплоидные потомки диплоидных родителей.
  • Полигаплоиды — гаплоидные потомки полиплоидных родителей.
  • Эугаплоиды — растения с нормальным для данного генома числом хромосом.
  • Анеугаплоиды — растения с числом хромосом, отклоняющимся от нормального для данного генома.
  • Псевдогаплоиды — гаплоиды, произошедшие от автополиплоидов.
  • Матроклинные гаплоиды — растения, произошедшие от яйцеклетки с редуцированным числом хромосом, или из клеток зародышевого мешка выполняющих функции яйцеклетки. К этому типу относят подавляющее большинство гаплоидов.
  • Андрогенные гаплоиды — гаплоидные растения, развивающиеся из яйцеклетки или клеток зародышевого мешка, хромосомы которых замещены хромосомами спермия. Этот вид гаплоидии известен у небольшого числа видов.
  • Андроклинные гаплоиды — гаплоидные растения, произошедшие из клеток мужского гаметофита – пыльцевых зерен. Получение андроклинных гаплоидов возможно только экспериментальным путём.
  • Моноплоиды, или моногаплоиды — гаплоиды, имеющие один геном.
  • Полигаплоиды — гаплоиды несущие два или более одинаковых – в случае автополигаплоидов, либо различных – в случае аллополигаплоидов, генома.

Диплоидная клетка: что это такое?

Диплоидная клетка — это клетка, геном которой состоит из двух наборов хромосом.. Другими словами, по сравнению с гаплоидной клеткой в ​​ней вдвое больше хромосом. Таким образом, диплоидия — это клеточное состояние, в котором ядро ​​имеет двойной набор хромосом.

К диплоидным клеткам принято относить следующую номенклатуру: 2n. Где (2n) относится к количеству хромосом и, как мы видим, оно умножается на числовое значение: 2. У человека, как мы видели, n = 23. Следовательно, диплоидные клетки нашего тела имеют 46 хромосом (2 x 23). Есть две копии каждой хромосомы.

Люди, как и подавляющее большинство животных и растений, являются организмами, основанными на диплоидии. Это означает, что практически все наши клетки (кроме гамет) имеют двойные хромосомы. Соматические клетки (все клетки в организме, кроме гамет) диплоидны..

Клетки кожи, мышечные клетки, костные клетки, клетки почек … Все наши клетки, кроме гамет, диплоидны. Их 2н. У них два набора хромосом. И в этом смысле генез диплоидных клеток основан на митозе, клеточном делении, которое состоит из деления стволовой клетки на две дочерние клетки, которые не только имеют одинаковое количество хромосом (2n), но и одинаковые (или почти одинаковые). то же самое, потому что в игру всегда вступают случайные мутации) генетическая информация.

Таким образом, диплоидия — это клеточное состояние диплоидных клеток, тех клеток, которые у человека составляют группу соматических клеток (всех, кроме сперматозоидов или яйцеклеток), которые получены в процессе митоза и что, прежде всего, у них есть два набора хромосом. У них вдвое больше хромосом по сравнению с гаплоидами, которые мы видели раньше.

Рекомендуем прочитать: «7 фаз митоза (и что происходит в каждой из них)»

Клеточный центр

Особенное образование. Он участвует в процессе митоза или мейоза (об этом ниже) и играет определенную роль в формировании цитоскелета.

Клеточный центр состоит из двух центриоль и центросферы. Центриоли внешне напоминают цилиндры, состоящие из микротрубочек. В процессе деления клетки они расходятся к полюсам клетки, и образуют веретено деление.

Органоиды движения есть не у всех клеток эукариот. Основная функция их, конечно, движение клетки, но также функции захвата веществ или сократительные. К этим органоидам относят:

  • реснички (встречаются у инфузорий и клеток эпителия дыхательных путей);
  • жгутики (жгутиконосцы и сперматозоиды);
  • ложноножки (корненожки и лейкоциты);
  • миофибриллы (мышечные клетки).

Понятие эукариотов

В эту категорию входят царства растений, грибов и животных. С греческого языка понятие переводится как «владеющий ядром». Это означает, что все эукариоты имеют ядро. По структуре их клетки похожи. Однако существуют и некоторые отличия между элементами организмов, которые относятся к разным царствам.

Так, для растительных клеток характерно наличие разных пластид и большой центральной вакуоли. Иногда она смещает ядро к периферии. Грибные клетки преимущественно состоят из хитина. При этом пластиды отсутствуют. В клеточных элементах животных пластиды, плотные стенки и центральная вакуоль отсутствуют.

Мнение эксперта
Карнаух Екатерина Владимировна
Закончила Национальный университет кораблестроения, специальность «Экономика предприятия»

Эукариоты характеризуются наличием достаточно крупных рибосом. Также они включают и другие органоиды. К ним относят клеточный центр, митохондрии, пластиды и прочие элементы.

Случай многих растений

У большинства растений жизненный цикл характеризуется чередованием поколений. Этими поколениями, чередующимися в жизни растения, являются поколение спорофитов (‘2n’) и поколение гаметофитов (‘n’).

Когда происходит слияние гамет ‘n’ с образованием диплоидной зиготы ‘2n’, образуется первая клетка спорофита. Это будет делиться последовательно по митозу, пока растение не достигнет репродуктивной стадии.

Здесь, мейотическое деление определенной группы ‘2n’ клеток приведет к набору ‘n’ гаплоидных клеток, которые сформируют так называемый гаметофит, мужской или женский.

Гаплоидные клетки гаметофитов не являются гаметами. Напротив, позже они будут разделены, чтобы дать начало соответствующим мужским или женским гаметам, но посредством митоза.

Общее о строении клеток прокариот и эукариот

Прокариоты и эукариоты — что это?

Замечание 1

Организмы одноклеточных и многоклеточных делятся на две категории — эукариоты и прокариоты.

Клетки животных, а также почти все растения и грибы обладают интерфазным ядром. Кроме того, прокариотические и эукариотические клетки (прокариоты и эукариоты) имеют стандартные для всех клеток органоиды. Такие организмы называются ядерными или эукариотами.

Прокариоты или доядерные — это не такая большая категория организмов, как эукариоты, но более древняя по своему происхождению. К ним относятся бактерии сине-зеленые водоросли (цианобактерии). У них нет настоящего ядра и большинства органоидов, присущих цитоплазме.

Но у эукариот и прокариот есть свои особенности. Обратимся к сравнению клеток прокариот и эукариот, в частности, рассмотрим строение прокариотической и эукариотической клеток, а также обозначим различия прокариот и эукариот.

Плоидность

Плоидия — это полный набор хромосом в клетке. У людей большинство соматических клеток находятся в диплоидном состоянии и переходят в гаплоидное состояние только в гаметах или половых клетках. В клетках водорослей и грибов происходит переключение между гаплоидным и диплоидным состоянием на протяжении их жизненного цикла (называемого чередованием генерации), и они находятся в гаплоидном состоянии на основной стадии своего жизненного цикла.

Полиплоидия относится к состоянию, когда присутствуют несколько наборов хромосом. Это обычно наблюдается в клетках растений, но не в клетках животных.

Диплоидные клетки получают митозом; гаплоиды, мейозом

Как мы видели, хотя гаплоиды могут быть получены путем митоза гаплоидных стволовых клеток, наиболее распространенным является то, что их генез основан на мейозе, типе клеточного деления, которое происходит в половых клетках и имеет цель как уменьшить хромосомную наделение (от 2n до n) и проведение генетической рекомбинации, для получения гаплоидных гамет (сперматозоидов или яйцеклеток) с генетической изменчивостью.

С другой стороны, генез диплоидных клеток основан на митозе, другом важном типе клеточного деления, которому следуют все соматические клетки в нашем организме и который заключается в делении стволовой клетки на две дочерние клетки, которые не только имеют одну и ту же хромосому. число (2n), но одна и та же (или почти такая же, потому что в игру всегда вступают случайные генетические мутации) информация об этих хромосомах

В отличие от мейоза, рекомбинации не было.

Рекомендуем прочитать: «7 отличий митоза от мейоза»

Насколько важен для будущего ребенка правильный набор хромосом

Анеуплоидия – это явление, при котором клетки организма содержат число хромосом измененное и не кратное гаплоидному набору. Анеуплоидия делится на два типа:

  1. Недостаток.
  2. Избыток.

При недостатке теряется сотня генов.

При избытке – становится больше генов, но это не является положительным для организма. Лишний генетический материал повышает нагрузку на ядро. Так, например, у людей с синдромом Дауна нарушена работа генов, которые находятся на других хромосомах, а дополнительной или лишней является 21. При данном синдроме возникает нехватка белков, поддерживающие их работу, на все хромосомы из-за избытка ДНК. Также нарушен баланс в количестве клеточных белков, так как их соотношение изменяется, что приводит к неадекватному реагированию клетки на внешние сигналы.

Шансы погибнуть у анеуплоидной клетки в несколько раз выше, так как при удвоении ДНК перед делением клетки возникают ошибки, клеточные белки репарационной системы распознают сбой и запускают удвоение заново. При избытке хромосом, как сказано выше, белков не хватает, сбои накапливаются и начинается программируемая гибель клетки (апоптоз). Но даже в случае избегания программируемой гибели, результатом такого деления с большой вероятностью будут являться новые анеуплоиды.

Трисомия – это наличие трех гомологичных хромосом вместо двух. В настоящее время известно лишь три случая трисомии, при которых возможна жизнь организма:

  1. Трисомия в 13 аутосоме (синдром Патау).
  2. Трисомия в 18 аутосоме (синдром Эдвардса).
  3. Трисомия в 21 аутосоме (синдром Дауна).

Так как данные аутосомы самые маленькие и несут меньше всего генов, трисомия в них совместима с жизнью. В геноме самой малой является 21, поэтому люди с синдромом Дауна могут прожить до 60 лет, в то время как, например, с синдромом Патау или Эдвардса в лучшем случае доживают до десяти лет.

История обнаружения хромосом

В ядре неделящихся (интерфазных) клеток хромосомы в тот период обнаружить не удалось. Поэтому раньше считали, что хромосомы — это структуры, которые появляются только в период митоза и отсутствуют в промежутке между делениями. Однако позже удалось рассмотреть хромосомы под электронным микроскопом и в интерфазном ядре.

Оказалось, что они являются постоянными структурами клеток, причем количество и морфология хромосом специфична для каждого вида организмов. Однако строение одних и тех же хромосом очень резко отличается в интерфазных и в делящихся клетках.

В ядрах неделящихся клеток хромосомы под электронным микроскопом имеют вид слабо спирализованных и очень тонких нитей. Толщина их около 14нм, а длина — 1000мкм и более. В тех же клетках, но находящихся на стадии метафазы (см. Митоз) хромосомы хорошо видны в световой микроскоп как палочковидные или нитевидные структуры. Длина их у разных организмов колеблется обычно от 1 до 50мкм, а у человека метафазные хромосомы имеют размеры 1,5-10мкм.

Происхождение эукариот

Известно, что клетки прокариота возникли 3,5 млн лет назад, и примерно 1,8 млн лет назад эволюционировали эукариотические клетки. Окаменелости эукариотических клеток есть в протерозое (1,5 млн лет назад), где наблюдаются остатки клеток с органеллами, покрытыми мембранами. В настоящее время большинство эукариотических клеток имеют обильные органеллы этого типа.

Как возникли эукариотические клетки

Эукариоты эволюционировали в течение протерозойской эры примерно 1,6 млрд лет назад. До возникновения эукариот вся жизнь на Земле была прокариотической (без ядра или других мембраносвязанных органелл). Ведущая гипотеза, называемая эндосимбиотической теорией, состоит в том, что эукариоты возникли в результате слияния архейских клеток с бактериями, где древний архей поглотил (но не съел) древнюю аэробную бактериальную клетку.

Поглощенная (эндосимбиозированная) бактериальная клетка оставалась внутри архейской клетки: поглощенная бактерия позволяла архейской клетке-хозяину использовать кислород для высвобождения энергии, запасенной в питательных веществах, а клетка-хозяин защищала бактериальную клетку от хищников. Такие отношения называются мутуалистическими.

На протяжении многих поколений симбиотические отношения между двумя организмами развивались настолько прочно, что ни один из них не мог выжить сам по себе. Данные о микрофоссилиях свидетельствуют о том, что эукариоты возникли где-то между 1,6 и 2,2 млрд лет назад. Иждивенцы этой древней поглощенной клетки сегодня присутствуют во всех эукариотических клетках в виде митохондрий.

Теория эндосимбиоза (также известная как теория последовательного эндосимбиоза) объясняет, как клетка возникает из мембранных органелл, таких как митохондрии и хлоропласт.

Суть теории естественного отбора, как ее установил «отец эволюции» Чарльз Дарвин, — это конкуренция. Исследователь в основном сосредоточился на описании конкуренции между людьми из популяции в пределах одного и того же вида, чтобы выжить.

Те особи, у кого самые благоприятные адаптации, могли лучше конкурировать за такие вещи, как еда, жилье и пара для размножения, чтобы создавать следующее поколение потомков, которые будут нести эти черты в своей ДНК.

Дарвинизм основан на конкуренции за эти виды ресурсов, чтобы естественный отбор работал. Без конкуренции все люди могут выжить, и благоприятные адаптации никогда не будут выбраны давлением окружающей среды.

Эволюция древнейших эукариот

Первый эукариот, возможно, произошел от предкового прокариота, который подвергся пролиферации мембран, разделению клеточной функции (на ядро, лизосомы и эндоплазматический ретикулум) и установлению эндосимбиотических отношений с аэробным прокариотом, что привело к образованию митохондрий.

Некоторые ранние эукариоты позже поглотили фотосинтезирующую бактерию, похожую на цианобактерии, что способствовало появлению хлоропластов у современных фотосинтезирующих эукариот.

§ 32. Чередование способов размножения и поколений в жизненном цикле растений

*Чередование поколений в жизненном цикле растений

Когда организмы могут размножаться как бесполым, так и половым путем, то говорят о бесполом и половом поколениях данного вида. Если они закономерно сменяют друг друга, то такое явление называется чередованием поколений. Границами, разделяющими бесполое и половое поколения в цикле развития растений, являются процесс образования спор с гаплоидным набором хромосом и оплодотворение, в результате которого восстанавливается диплоидный набор хромосом.

У растений механизм чередования поколений заключается в том, что на растениях, представляющих собой бесполое поколение, развиваются споры, которые прорастают в обоеполые либо раздельнополые (мужские и женские) особи (половое поколение). Половое поколение образует гаметы — спермии и яйцеклетки. В результате оплодотворения формируется зигота, содержащая диплоидный набор хромосом, из которой вновь развивается бесполое поколение (см. схему).

Если проследить за соотношением между бесполым и половым поколениями у растений разного уровня организации, то можно увидеть, что в ходе эволюции развитию подвергалось бесполое поколение, тогда как для полового поколения было характерно постепенное упрощение строения. Например, у мхов преобладающим является половое поколение, на котором живет бесполое поколение. А у папоротников преобладающим является бесполое поколение в виде хорошо развитого растения со стеблем, листьями и корнями, в то время как половое поколение представлено всего лишь небольшой зеленой пластинкой, прикрепляющейся к почве с помощью ризоидов. Далее, у голосеменных и покрытосеменных строение полового поколения упрощается до нескольких клеток, причем с полной редукцией органов полового размножения у покрытосеменных. У них мужское половое поколение — это пыльцевое зерно, а женское — зародышевый мешок. Тогда как бесполое поколение у голосеменных представлено деревьями и кустарниками (иногда лианами), а у покрытосеменных — деревьями, кустарниками, кустарничками и травами.

Чередование поколений — это система для увеличения численности особей и сохранения вида

Оно имеет важное биологическое значение, так как при этом сочетаются два способа размножения: бесполое, которое дает довольно большое количество особей, и половое, при котором обогащается наследственность потомства, могут возникать новые признаки или свойства

!  Это интересно

Помимо типичного полового процесса, в котором участвуют две сливающиеся гаметы, в природе у растений встречается особый тип размножения, называемый апомиксисом (аналогия партеногенеза у животных). В этом случае зародыш образуется из неоплодотворенной яйцеклетки, которая может быть гаплоидной или диплоидной из-за аномалий гаметогенеза. Апомиксис широко встречается у розоцветных, сложноцветных, в том числе у некоторых сортов свеклы, хлопчатника, льна, табака и других сельскохозяйственных культур. Такие формы имеют большое значение в селекции.

Повторим главное. Образование половых клеток у покрытосеменных растений происходит в генеративных частях цветка — тычинках и пестиках. Этому предшествует развитие полового поколения: в тычинках — пыльцевых зерен, в семязачатке — зародышевого мешка. Они образуют гаметы — спермии и яйцеклетки. После опыления происходит оплодотворение с участием двух спермиев. Из зиготы образуется зародыш, из семязачатка формируется семя, а на месте завязи развивается плод. В ходе эволюции происходило усложнение организации бесполого поколения, тогда как строение полового поколения постепенно упрощалось.

Сосудистые и несосудистые растения

Чередование поколений наблюдается как у сосудистых, так и несосудистых растений. Сосудистые растения содержат систему сосудистой ткани, которая транспортирует воду и питательные вещества по всему телу растения. Несосудистые растения не имеют такой системы и нуждаются во влажных местах обитания для выживания. К ним относятся мхи, ан­то­це­ро­то­вид­ные и печёночные мхи. Эти растения выглядят как зеленые маты растительности с выступающими из них стебельками. Первичной фазой жизненного цикла несосудистых растений является генерация гаметофитов. Фаза гаметофит состоит из зеленой мшистой растительности, а фаза спорофит состоит из удлиненных стеблей со спорангиями на концах.

Первичной фазой жизненного цикла сосудистых растений является генерация спорофитов. В сосудистых растениях, которые не производят семена, такие как папоротники и хвощи, поколения спорофитов и гаметофитов независимы. Например, у папоротников ветвь с листьями представляют собой зрелое диплоидное образование спорофитов. Спорангии на нижней стороне листьев вырабатывают гаплоидные споры, которые прорастают для образования гаплоидных гаметофитов папоротника (проталлий). Эти растения процветают во влажных условиях, так как вода необходима для оплодотворения.

Сосудистые растения, которые производят семена, не всегда зависят от влажных сред обитания для размножения. Семена защищают развивающиеся эмбрионы. Как в цветковых, так и в нецветковых растениях (хвойных) генерация гаметофитов полностью зависит от доминирующих поколений спорофит. В цветущих растениях репродуктивная структура – цветок. Цветок производит как мужские микроспоры, так и женские мегаспоры.

Сами микроспоры содержатся в пыльце и вырабатываются в тычинке растения, развиваясь в мужские половые клетки. Женские мегаспоры производятся в пестики растений и развиваются в женские гаметы. Во время опыления пыльца переносится ветром, насекомыми или другими животными в женскую часть цветка. Мужские и женские гаметы объединяются и развиваются в семя, а завязь образует плод. У хвойных, пыльца производится в мужских шишках, а в женских шишках после оплодотворение формируется зародыш.

Мне нравитсяНе нравится1

Характеристика и особенности клеток эукариот

Характеристика эукариот

Данные, полученные после изучения древних окаменелостей, привели биологов к выводу, что все живые эукариоты являются потомками одного общего предка. Сопоставление характеристик, обнаруженных во всех основных группах эукариот, показывает, что следующие характеристики должны были присутствовать у последнего общего предка, потому что эти характеристики присутствуют по крайней мере у некоторых представителей каждой основной линии.

  1. Клетки с ядрами, окруженными ядерной оболочкой с ядерными порами. Это единственная характеристика, которая одновременно необходима и достаточна для определения организма как эукариота. Все существующие эукариоты имеют клетки с ядрами.
  2. Митохондрия. Некоторые сохранившиеся эукариоты имеют очень редуцированные остатки митохондрий в своих клетках, в то время как другие представители их линий имеют «типичные» митохондрии.
  3. Цитоскелет, содержащий структурные и подвижные компоненты, называемые актиновыми микрофиламентами и микротрубочками. Все существующие эукариоты обладают этими элементами цитоскелета.
  4. Жгутики и реснички — это органеллы, связанные с подвижностью клеток. У некоторых сохранившихся эукариот отсутствуют жгутики и/или реснички, но они произошли от предков, которые ими обладали.
  5. Хромосомы, каждая из которых состоит из линейной молекулы ДНК, свернутой вокруг основных (щелочных) белков, называемых гистонами. Несколько эукариот с хромосомами, лишенными гистонов, явно произошли от предков, у которых они были.
  6. Митоз — процесс ядерного деления, при котором реплицированные хромосомы делятся и разделяются с использованием элементов цитоскелета. Митоз повсеместно присутствует у эукариот.
  7. Деление — процесс генетической рекомбинации, уникальный для эукариот. При делении диплоидные ядра на одной стадии жизненного цикла подвергаются мейозу с образованием гаплоидных ядер и последующей кариогамии — стадии, на которой два гаплоидных ядра сливаются вместе, образуя диплоидное ядро зиготы.
  8. Представители всех основных линий имеют клеточные стенки, и было бы разумно сделать вывод, что последний общий предок мог создавать клеточные стенки на каком-то этапе своего жизненного цикла. Однако о клеточных стенках эукариот и их развитии известно недостаточно, чтобы знать, насколько у них существует гомология. Если последний общий предок мог создавать клеточные стенки, то ясно, что эта способность должна была быть утрачена во многих группах.

Особенности клеток эукариот

  1. Различные формы: в зависимости от среды, в которой находится клетка, она может быть сферической, кубической, пирамидальной, плоской или звездчатой.
  2. Различные размеры: эукариотические клетки могут измерять от 10 мкм (например, лимфоциты) до 100 мкм (например, адипоциты или жировые клетки).
  3. Разнообразные функции: хотя эукариотические одноклеточные существа, такие как паразиты, должны выполнять все функции, необходимые для их выживания, у многоклеточных существ существуют клетки с различными функциями. Например, клетки кишечника предназначены для поглощения питательных веществ и отправки их в кровь, откуда они распределяются. Корневые клетки растений поглощают питательные вещества и воду из почвы.
  4. Наличие органелл: внутри эукариотической клетки находятся структуры, специализирующиеся на определенных функциях, включая хлоропласты, аппарат Гольджи, митохондрии, везикулы и лизосомы.

Должность [ править ]

Классификации хромосом

я Телоцентрический Центромеры расположены очень близко к верхушке, p руки едва видны, если видны вообще.
II Акроцентрический Плечи q по-прежнему намного длиннее, чем плечи p, но плечи p длиннее, чем у телоцентрических.
III Субметацентрический Плечи p и q очень близки по длине, но не равны.
IV Метацентрический Плечи p и q равны по длине.

A : Короткое плечо (p-плечо) B : Центромера C : Длинное плечо (q-плечо) D : Сестринские хроматиды

Каждая хромосома имеет два плеча, обозначенных p (более короткое из двух) и q (более длинное). Многие помнят, что короткая рука «p» названа в честь французского слова «petit», означающего «маленький», хотя это объяснение оказалось апокрифическим. Они могут быть соединены метацентрическим, субметацентрическим, акроцентрическим или телоцентрическим способом.

Категоризация хромосом по относительной длине плеч
Положение центромеры Соотношение длины рук Знак Описание
Medial sensu stricto 1,0 — 1,6 M Метацентрический
Медиальная область 1,7 м Метацентрический
Submedial 3.0 см Субметацентрический
Субтерминал 3,1 — 6,9 ул Субтелоцентрический
Терминальный регион 7.0 т Акроцентрический
Terminal sensu stricto Т Телоцентрический
Заметки Метацентрический : M + m Ателоцентрический : M + m + sm + st + t

Метацентрический править

Это Х-образные хромосомы с центромерой посередине, так что два плеча хромосом почти равны.

Хромосома является метацентрической, если ее два плеча примерно равны по длине. В нормальном кариотипе человека пять хромосом считаются метацентрическими: хромосомы 1, 3, 16, 19 и 20. В некоторых случаях метацентрическая хромосома образуется путем сбалансированной транслокации: слияния двух акроцентрических хромосом с образованием одной метацентрической хромосомы.

Акроцентрический править

Если p (короткое) плечо настолько короткое, что его трудно наблюдать, но оно все еще присутствует, тогда хромосома акроцентрическая (« акро- » в слове «акроцентрический» относится к греческому слову «пик»). Геном человека включает в себя пять акроцентрической хромосомы: 13 , 14 , 15 , 21 , 22 . Y — хромосома также акроцентрическая.

В акроцентрической хромосоме p-плечо содержит генетический материал, включая повторяющиеся последовательности, такие как ядрышковые организующие области, и может перемещаться без значительного вреда, как при сбалансированной Робертсоновской транслокации . Домашняя лошадь геном включает в себя один метацентрическую хромосому, которая гомологична двум акроцентрических хромосом в конспецифическом но освоене лошади Пржевальского . Это может отражать либо фиксацию сбалансированной робертсоновской транслокации у домашних лошадей, либо, наоборот, фиксацию деления одной метацентрической хромосомы на две акроцентрические хромосомы у лошадей Пржевальского. Похожая ситуация существует между геномами человека и великой обезьяны, с сокращением двух акроцентрических хромосом у человекообразных обезьян до одной метацентрической хромосомы у человека (см. Анеуплоидия и хромосома человека 2 ).

Поразительно, что вредные транслокации в контексте заболевания, особенно несбалансированные транслокации при раке крови, чаще затрагивают акроцентрические хромосомы, чем неакроцентрические хромосомы. Хотя причина неизвестна, вероятно, это связано с физическим расположением акроцентрических хромосом в ядре . Акроцентрические хромосомы обычно расположены в ядрышке и вокруг него , то есть в центре ядра, где хромосомы имеют тенденцию быть менее плотно упакованными, чем хромосомы на периферии ядра. Соответственно, хромосомные области, которые менее плотно упакованы, также более склонны к хромосомным транслокациям при раке.

Телоцентрический править

Центрера телоцентрической хромосомы расположена на конце хромосомы. Следовательно, у телецентрической хромосомы только одно плечо. Теломеры могут отходить от обоих концов хромосомы, их форма похожа на букву «i» в анафазе. Например, стандартный кариотип домовой мыши имеет только телецентрические хромосомы. Люди не обладают телоцентрическими хромосомами.

Субтелоцентрический править

Если центромера хромосомы расположена ближе к ее концу, чем к ее центру, ее можно охарактеризовать как субтелоцентрическую.

Сравнительная характеристика

Отличие митоза и мейоза состоит в продолжительности фаз и происходящих в них процессах. Ниже предлагаем вам таблицу «Митоз и мейоз», где указаны основные различия двух способов деления. Фазы мейоза такие же, как и у митоза. Подробнее узнать о сходствах и различиях двух процессов вы сможете в сравнительной характеристике.

Фазы

Митоз

Мейоз

Первое деление

Второе деление

Интерфаза

Набор хромосом материнской клетки диплоидный. Синтезируется белок, АТФ и органические вещества. Хромосомы удваиваются, образуются две хроматиды, соединённые центромерой.

Диплоидный набор хромосом. Происходят те же действия, что и при митозе. Отличием является продолжительность, особенно при образовании яйцеклеток.

Гаплоидный набор хромосом. Синтез отсутствует.

Профаза

Непродолжительная фаза. Растворяются ядерные мембраны и ядрышко, формируется веретено деления.

Занимает больше времени, чем при митозе. Также исчезают ядерная оболочка и ядрышко, формируется веретено деления. Помимо этого наблюдается процесс конъюгации (сближение и слияние гомологичных хромосом). При этом происходит кроссинговер – обмен генетической информации на некоторых участках. После хромосомы расходятся.

По продолжительности – короткая фаза. Процессы такие же, как и при митозе, только с гаплоидными хромосомами.

Метафаза

Наблюдается спирализация и расположение хромосом в экваториальной части веретена.

Аналогично митозу

Тоже, что и при митозе, только с гаплоидным набором.

Анафаза

Центромеры делятся на две самостоятельные хромосомы, которые расходятся к разным полюсам.

Деление центромер не происходит. К полюсам отходит одна хромосома, состоящая из двух хроматид.

Аналогично митозу, только с гаплоидным набором.

Телофаза

Цитоплазма делится на две одинаковые дочерние клетки с диплоидным набором, образуются ядерные мембраны с ядрышками. Веретено деления исчезает.

По длительности непродолжительная фаза. Гомологичные хромосомы располагаются в разных клетках с гаплоидным набором. Цитоплазма делится не во всех случаях.

Цитоплазма делится. Образуется четыре гаплоидные клетки.

Рис. 3. Сравнительная схема митоза и мейоза

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Дружный центр
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: