Как происходит мейоз клетки, этапы
Мейоз представляет собой последовательность из двух этапов деления:
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут
- Редукционный — это непосредственный этап уменьшения. Именно так переводится с греческого языка его название. Когда этот период заканчивается, в клетке остается ровно в два раза меньше наследственных хромосом.
- Эквационный («уравнивающий»). Протекает сходно с митозом.
Оба происходят в половых клетках и связаны с образованием гамет (у животных) или спор (у растений).
Ингибиторы циклин-зависимой киназы
Ингиби́тор цикли́н-зави́симой кина́зы (англ. Cdk inhibitor protein, CKI, CDI, CDKI) — белок, блокирующий активность циклин-зависимой киназы отдельно или циклин-зависимой киназы в комплексе с циклином. Обычно сдерживающая активность CKI приурочена к фазе G1 клеточного цикла. К тому же, активация CKI может происходить в ответ на провреждения ДНК или может быть вызвана внеклеточными ингибирующими сигналами.
Большинство эукариотических организмов обладают ингибиторами циклин-зависимых киназ. В животных клетках выделяют два семейства CKI: Cip/Kip и INK4.
Ингибиторы семейства Cip/Kip блокируют циклин-зависимую киназу в комплексе с циклином, а ингибиторы семейства INK4 блокируют отдельные циклин-зависимые киназы Cdk4 и Cdk6. В животных клетках ингибиторы циклин-зависимых киназ разделяются на два основных семейства: Cip/Kip и INK4. Семейство Cip/Kip включает ингибиторы CDK белки p21, p27, p57. К основным субстратам Cip/Kip-ингибиторов относятся циклин-киназные комплексы G1/S-Cdk и S-Cdk, отвечающие, соответственно, за G1/S-переход и вступление в S-фазу. Ингибиторы семейства INK4 блокируют циклин-зависимые киназы Cdk4 и Cdk6 регулирующие G1-фазу клеточного цикла.
Рис. Схема ингибирования Cdk6 с участием INK4. Белок INK4 соединяется с циклин-зависимой киназой Cdk6 и смещает аминоконцевую долю киназы примерно на 15° относительно оси вращения. В итоге, деформируется каталитическая область Cdk6, а также снижается способность циклин-зависимой киназы к связыванию циклина. |
На протяжении фазы G1 в растущей клетке блокируется активность циклин-зависимых киназ (англ. Cdk) до момента вступления клетки в очередной клеточный цикл. Сдерживание активности Cdk обеспечивается тремя контрольными механизмами. Во-первых, снижением экспрессии генов циклинов. Во-вторых, увеличением степени деградации циклинов. Наконец, к третьему типу сдерживания активности Cdk относятся ингибиторы CKI. Помимо обеспечения стабильного роста клетки в фазе G1 ингибиторы циклин-зависимых киназ участвуют в аресте клеточного цикла на стадии G1 в ответ на неблагоприятные внешние условия. К тому же события клеточного цикла могут блокироваться с участием CKI при повреждениях ДНК.
Ингибиторы циклин-зависимых киназ: Sic1 у почкующихся дрожжей, Rum1 у делящихся дрожжей и Rux у Drosophila — несмотря на структурные различия обладают как минимум тремя сходными функциональными особенностями. Во-первых, основными мишенями данных CKI являются митотические циклин-киназы (англ. M-Cdk) и циклин-киназы синтетической фазы клеточного цикла (англ. S-Cdk). В то же время указанные ингибиторы CKI не могут блокировать циклин-зависимые киназы, обеспечивающие переход клетки из фазы G1 в S-фазу (англ. G1/S-Cdk). Наконец, третьей характерной особенностью всех перечисленных ингибиторов CKI является способ их деактивации. Все они разрушаются после фосфорилирования со стороны активных циклин-зависимых киназ.
Семейство Cip / Kip (p21, p27, p57) регулирует динамику актина посредством ингибирования пути Rho-ROCK-LIMK
Что такое мейоз
Второй способ деления эукариотической клетки — мейоз. Это процесс деления клетки, во время которого получаются дочерние клетки — гаметы. У мужчин это сперматозоид, а у женщин яйцеклетка. Гаметы получают только половину генетической информации родительской клетки. Число хромосом уменьшается в два раза.
Схема мейоза
Затем гаметы могут объединяться, образуя новую клетку, сочетающую генетическую информацию обеих клеток-родителей — зиготу. Процесс слияния половых клеток называется оплодотворением. Если зигота совершит цепь митозов, сформируется новый организм.
По промокоду BIO92021 вы получите бесплатный доступ к курсу биологии 9 класса, по промокоду BIO10112021 бесплатный доступ к курсу биологии 10 класса. Выберите нужный раздел и изучайте биологию вместе с домашней онлайн-школой «Фоксфорда»!
Каждая гамета человека содержит 23 хромосомы — гаплоидный набор (n). Когда гаметы объединяются, получается зигота с 46 хромосомами — диплоидный набор (2n).
Во время мейоза одна клетка с 46 хромосомами делится дважды. Первое деление называется мейоз I, второе деление называется мейоз II. Интерфаза между двумя этапами деления мейоза настолько кратковременна, что практически незаметна, и в ней не происходит удвоение ДНК. В результате образуются четыре дочерние клетки, каждая с 23 хромосомами.
Мейоз I подразделяется на четыре фазы, аналогичные фазам митоза:
- Профаза I (2n4c) — занимает 90% времени. Происходит скручивание молекул ДНК и образование хромосом. Каждая хромосома состоит из двух гомологичных хроматид — 2n4c. Происходит конъюгация хромосом: гомологичные (парные) хромосомы сближаются и скручиваются, образуя структуры из двух соединённых хромосом — такие структуры называют тетрады, или биваленты. Затем гомологичные хромосомы начинают расходиться. При этом происходит кроссинговер — обмен участками между гомологичными хромосомами. В результате этого процесса создаются новые комбинации генов в потомстве. Растворяется ядерная оболочка. Разрушаются ядрышки. Формируется веретено деления.
- Метафаза I (2n4c) — биваленты выстраиваются на экваторе веретена деления, при этом ориентация центромер к полюсам абсолютно случайная.
- Анафаза I (хромосомный набор к концу анафазы: у полюсов — 1n2c, в клетке — 2n4c) — гомологичные хромосомы отходят к разным полюсам, при этом сестринские хроматиды всё ещё соединены центромерой. За счёт случайной ориентации центромер распределение хромосом к полюсам также случайно, так как нити веретена прикрепляются произвольно.
- Телофаза I (1n2c) — происходит деспирализация хромосом. Если интерфаза между делениями длительна, может образоваться новая ядерная оболочка.
Мейоз I
Мейоз II подразделяется на четыре такие же фазы:
- Профаза II (1n2c) — восстанавливается новое веретено деления, ядерная мембрана растворяется, если образовывалась в телофазе I.
- Метафаза II (1n2c) — хромосомы выстраиваются в экваториальной части веретена, а нити веретена прикрепляются к центромерам.
- Анафаза II (хромосомный набор у каждого полюса — 1n1c, в клетке — 2n2c) — центромеры расщепляются, двухроматидные хромосомы разделяются, и теперь к каждому полюсу движется однохроматидная хромосома.
- Телофаза II (1n1c) — происходит деспирализация хромосом, формирование ядерных оболочек и разделение цитоплазмы; в результате двух делений из диплоидной материнской клетки получается четыре гаплоидных дочерних клетки.
Мейоз II
Биологическое значение мейоза — образование гаплоидных клеток, отличающихся генетически друг от друга: половых клеток (гамет) у животных и спор у растений.
Метафаза мейоза 1
В процессе метафазы мейоза клетка претерпевает следующие изменения:
- происходит окончательное формирование веретена деления в горизонтальной плоскости;
- тетрады, состоящие из четырех групп половинчатого набора хромосом, выстраиваются на метафазной пластине, в экваториальной плоскости клетки;
- центромеры, или центральные области половинчатых наборов хромосом приобретают ориентировку на два полюса клетки.
Закончив преобразования, клетка входит в анафазу.
Анафаза в мейозе 1
В этом периоде в клетке происходят процессы разделения набора хромосом на две части.
- Разделившиеся хромосомы притягиваются к двум полюсам клетки при помощи взаимодействия кинетохоров и микротрубочек.
- При этом, сестринские хроматиды не делятся, оставаясь вместе до полного разделения гомологичных хромосом.
Далее анафаза плавно переходит в телофазу 1. Это сложный период, характеризующийся фактическим разделением клетки на две аналогичные.
- Волоконца продолжают растягивать наборы хромосом к противоположным концам образующихся клеток.
- Как только данный процесс завершается, каждая половинка клетки остается со своим половинчатым набором хромосом.
- Цитокенез – деление полужидкого содержимого клетки, именуемого цитоплазмой, как правило, происходит в процессе телофазы 1. Клетка делится путем выпячивания клеточной мембраны.
- Ядра принимают свою исходную форму.
- По окончании процесса образуются две дочерние клетки, имеющие половинчатый набор хромосом материнской и все необходимые для жизни и развития органоиды. Получившиеся клетки по размерам уступают родительской вдвое, и начинают свой рост.
Клетка готовится к следующей стадии своего деления, при этом, генетический материал изменений больше не претерпевает. Клетка входит в профазу 2.
Мейоз
Деление половых клеток называется мейозом, оно сопровождается уменьшением числа хромосом вдвое. Особенность данного процесса состоит в том, что проходит он в два этапа, которые непрерывно следуют друг за другом.
ТОП-4 статьи
которые читают вместе с этой
Интерфаза между двумя этапами деления мейоза настолько кратковременна, что практически незаметна.
Рис. 2. Схема мейоза
Биологическим значением мейоза является образование чистых гамет, которые содержат гаплоидный, другими словами одинарный, набор хромосом. Диплоидность восстанавливается после оплодотворения, то есть слияния материнской и отцовской клетки. В результате слияния двух гамет образуется зигота с полным набором хромосом.
Уменьшение числа хромосом при мейозе очень важно, так как в противном случае при каждом делении число хромосом увеличивалось бы. Благодаря редукционному делению поддерживается постоянное число хромосом.
Митоз
Процесс непрямого деления, или митоз, чаще всего встречается в природе. На нём основывается деление всех существующих неполовых клеток, а именно мышечных, нервных, эпителиальных и прочих.
Состоит митоз из четырёх фаз: профазы, метафазы, анафазы и телофазы. Основная роль данного процесса — равномерное распределение генетического кода от родительской клетки к двум дочерним. При этом клетки нового поколения один к одному схожи с материнскими.
Рис. 1. Схема митоза
Время между процессами деления называются интерфазой
. Чаще всего интерфаза гораздо длиннее митоза. Для этого периода характерны:
- синтез белка и молекулы АТФ в клетке;
- удваивание хромосом и образование двух сестринских хроматид;
- увеличение числа органоидов в цитоплазме.
Значение мейоза
В многоклеточном организме мейозом делятся только половые клетки. Поэтому главное значение мейоза – это обеспечение механизма полового размножения, при котором сохраняется постоянство числа хромосом у вида.
Другое значение мейоза – это протекающая в профазе I перекомбинация генетической информации, т. е. комбинативная изменчивость. Новые комбинации аллелей создаются в двух случаях. 1. Когда происходит кроссинговер, т. е. несестринские хроматиды гомологичных хромосом обмениваются участками. 2. При независимом расхождении хромосом к полюсам в обоих мейотических делениях. Другими словами, каждая хромосома может оказаться в одной клетке в любой комбинации с другими негомологичными ей хромосомами.
Уже после мейоза I клетки содержат разную генетическую информацию. После второго деления все четыре клетки отличаются между собой
Это важное отличие мейоза от митоза, при котором образуются генетически идентичные клетки
Кроссинговер и случайное расхождение хромосом и хроматид в анафазах I и II создают новые комбинации генов и являются одной из причин наследственной изменчивости организмов, благодаря которой возможна эволюция живых организмов.
Общая информация
При половом размножении после слияния двух гамет образуется зигота. Именно из этой клетки затем и развивается дочерний организм. Родительские половые клетки имеют определенный гаплоидный набор (n) хромосом. После их соединения число хромосом в зиготе увеличивается и становится диплоидным (2n). При этом каждая пара гомологических хромосом имеет по одной материнской и отцовской хромосоме. Так кратко можно описать сущность процесса формирования диплоидных клеток из гаплоидных, который и называется мейоз.
Уже в 1883 году ученые при изучении оплодотворения и предзародышевого развития (гаметогеноз) у червей обнаружили одну закономерность — яйцеклетки и сперматозоиды содержат в два раза меньше хромосом в сравнении с зиготой. Во время дальнейшего внимательного изучения гаметогенеза был обнаружен новый вид деления клеток — мейоз. На установление главных закономерностей этого процесса было затрачено около 50 лет.
Функция и цель мейоза
Мейоз необходим у многих животных, размножающихся половым путем, чтобы обеспечить такое же количество хромосом у потомства, как и у родителей. Акт оплодотворение включает в себя две клетки, сливающиеся вместе, чтобы стать новой зиготой. Если количество аллелей каждого гена не уменьшено до 1 в гаметах, которые производят зиготу, у потомства будет 4 копии каждого гена. У многих животных это привело бы ко многим дефектам развития. У других организмов полиплоидия распространена, и они могут существовать со многими копиями одного и того же гена. Однако если организм не могут выжить, если они полиплоидия, мейоз должен произойти до размножения. Мейоз происходит в двух разных отделах, с разными фазами в каждом.