Г) Эндоплазматическая сеть (ЭПС) — Студопедия
Вся внутренняя зона цитоплазмы заполнена многочисленными мелкими каналами и полостями, стенки которых представляют собой мембраны, сходные по своей структуре с плазматической мембраной.
Эти каналы ветвятся, соединяются друг с другом и образуют сеть, получившую название эндоплазматической сети. Эндоплазматическая сеть неоднородна по своему строению.
Известны два ее типа – гранулярная и гладкая.
На мембранах каналов и полостей гранулярной сети располагается множество мелких округлых телец – рибосом, которые придают мембранам шероховатый вид. Мембраны гладкой эндоплазматической сети не несут рибосом на своей поверхности. ЭПС выполняет много разнообразных функций.
Основная функция гранулярной эндоплазматической сети – участие в синтезе белка, который осуществляется в рибосомах. На мембранах гладкой эндоплазматической сети происходит синтез липидов и углеводов.
Все эти продукты синтеза накапливаются в каналах и полостях, а затем транспортируются к различным органоидам клетки, где потребляются или накапливаются в цитоплазме в качестве клеточных включений. ЭПС связывает между собой основные органоиды клетки(рис. 2.13).
Рис. 2.13. Строение эндоплазматической сети (ЭПС) или ретикулума
Д) Аппарат Гольджи
Строение этого органоида сходно в клетках растительных и животных организмов, несмотря на разнообразие его формы. Выполняет много важных функций.
Одномембранный органоид. Представляет собой стопки уплощенных «цистерн» с расширенными краями, с которыми связана система мелких одномембранных пузырьков (пузырьки Гольджи).
Пузырьки Гольджи в основном сконцентрированы на стороне, примыкающей к ЭПС, и по периферии стопок.
Полагают, что они переносят в аппарат Гольджи белки и липиды, молекулы которых, передвигаясь из цистерны в цистерну, подвергаются химической модификации.
Все эти вещества сначала накапливаются, химически усложняются, а затем в виде крупных и мелких пузырьков поступают в цитоплазму и либо используются в самой клетке в процессе ее жизнедеятельности, либо выводятся из нее и используются в организме (рис. 2.14-2.15).
Рис. 2.14. Строение аппарата Гольджи
Функции:
– накопление белков, липидов, углеводов;
– модификация и упаковка в мембранные пузырьки (везикулы) поступивших органических веществ; секреция белков, липидов, углеводов;
– место образования лизосом.
– секреторная функция, поэтому аппарат Гольджи хорошо развит в секреторных клетках.
Рис. 2.15. Комплекс Гольджи
Е) Лизосомы
Представляют собой небольшие округлые тельца. Внутри лизосомы находятся ферменты, расщепляющие белки, жиры, углеводы, нуклеиновые кислоты. К пищевой частице, поступившей в цитоплазму, подходят лизосомы, сливаются с ней, и образуется одна пищеварительная вакуоль, внутри которой находится пищевая частица, окруженная ферментами лизосом.
Одномембранные органоиды. Представляют собой мелкие пузырьки (диаметр от 0,5 до 2 мкм), содержащие набор гидролитических ферментов.
Ферменты синтезируются на шероховатой ЭПС, перемещаются в аппарат Гольджи, где происходит их модификация и упаковка в мембранные пузырьки лизосом. Лизосома может содержать от 20 до 60 различных видов гидролитических ферментов.
Расщепление веществ с помощью ферментов называют лизисом. Различают первичные и вторичные лизосомы. Первичными называются лизосомы, отпочковавшиеся от аппарата Гольджи.
Вторичными называются лизосомы, образовавшиеся в результате слияния первичных лизосом с эндоцитозными вакуолями. В этом случае в них происходит переваривание веществ, поступивших в клетку путем фагоцитоза или пиноцитоза, поэтому их можно назвать пищеварительными вакуолями.
Функции лизосом:
– переваривание захваченных клеткой при эндоцитозе веществ или частиц (бактерий, других клеток),
– аутофагия — уничтожение ненужных клетке структур, например, во время замены старых органоидов новыми, или переваривание белков и других веществ, произведенных внутри самой клетки,
– автолиз — самопереваривание клетки, приводящее к ее гибели (иногда этот процесс не является патологическим, а сопровождает развитие организма или дифференцировку некоторых специализированных клеток) (рис. 2.16-2.17).
Пример: При превращении головастика в лягушку, лизосомы, находящиеся в клетках хвоста, переваривают его: хвост исчезает, а образовавшиеся во время этого процесса вещества всасываются и используются другими клетками тела.
Рис. 2.16. Образование лизосом
Рис. 2.17. Функционирование лизосом
Основные компоненты прокариотической клетки
Основными компонентами прокариотической клетки являются:
- Клеточная стенка, которая окружает клетку извне, защищает её, придаёт устойчивую форму, предотвращающую от осмотического разрушения. У бактерий клеточная стенка состоит из муреина, построенного из длинных полисахаридных цепей, соединенных между собой короткими пептидными перемычками. Клеточная стенка архей не содержит муреина, а построена в основном из разнообразных белков и полисахаридов.
- Жгутики — органеллы движения некоторых бактерий. Бактериальный жгутик построен значительно проще эукариотического, и он в 10 раз тоньше, внешне не покрыт плазматической мембраной и состоит из одинаковых молекул белков, которые образуют цилиндр. В мембране жгутик закреплен при помощи базального тела.
- Плазматическая и внутренние мембраны. Общий принцип устройства клеточных мембран не отличается от эукариот, однако химическом составе мембраны есть немало различий, в частности, в мембранах прокариот отсутствуют молекулы холестерина и некоторых липидов, присущих мембранам эукариот. Большинство прокариотических клеток (в отличие от эукариотических) не имеют внутренних мембран, которые разделяют цитоплазму на отделы (компартменты). Только у некоторых фотосинтетических и аэробных бактерий плазмалемма образует вгибание внутрь клетки, что выполняет соответствующие метаболические функции.
- Нуклеоид — не ограниченный мембранами участок цитоплазмы, в котором расположена кольцевая молекула ДНК — «бактериальная хромосома», где хранится весь генетический материал клетки.
- Плазмиды — небольшие дополнительные кольцевые молекулы ДНК, несущие обычно всего несколько генов. Плазмиды, в отличие от бактериальной хромосомы, не являются обязательным компонентом клетки. Обычно они придают бактерии определенные полезные для неё свойства, такие как устойчивость к антибиотикам, способность усваивать из среды определенные энергетические субстраты, способность инициировать половой процесс и тд.
- Рибосомы прокариот, как и у всех других живых организмов, отвечают за осуществление процесса трансляции (одного из этапов биосинтеза белка). Однако бактериальные рибосомы несколько меньше, чем эукариотические и имеют другой состав белков и РНК. Из-за этого бактерии, в отличие от эукариот, чувствительны к таким антибиотикам, как эритромицин и тетрациклин, которые избирательно действуют на прокариотические рибосомы.
- Споры (эндоспоры) — окруженные плотной оболочкой структуры, содержащие ДНК бактерии и обеспечивающее выживание в неблагоприятных условиях. К образованию спор способны лишь некоторые виды прокариот, например в частности возбудитель столбняка, возбудитель ботулизма и возбудитель сибирской язвы. Для образования эндоспоры клетка реплицирует свою ДНК и окружает копию плотной оболочкой, из созданной структуры удаляется избыток воды, и в ней замедляется метаболизм. Споры бактерий могут выдерживать довольно жесткие условия среды, такие как длительное высушивание, кипячение, коротковолновое облучение.
Строение эндоплазматической сети
Эндоплазматическая сеть или ЭПС — это совокупность мембран, относительно равномерно распределенная по цитоплазме клеток эукариот. ЭПС имеет огромное количество разветвлений и представляет собой сложно структурированную систему взаимосвязей.
ЭПС является одной из составляющих клеточной мембраны. Сама же она включается в себя каналы, трубочки и цистерны, позволяющие распределить внутреннее пространство клетки на определенные участки, а также значительно расширить ее. Все место внутри клетки заполняет матрикс — плотное синтезированное вещество, и каждый из его участков имеет разный химический состав. Поэтому в полости клетки может идти сразу несколько химических реакций, охватывающих только определенную область, а не всю систему. Заканчивается ЭПС перинуклеарным пространством.
Липиды и белки — основные вещества в составе мембраны эндоплазматической сети. Нередко встречаются еще и различные ферменты.
Виды ЭПС:
- Агранулярная (аПС) — по сути своей — система скрепленных трубочек, не содержащая рибосом. Поверхность такой ЭПС, из-за отсутствия на ней чего-либо, гладкая.
- Гранулярная (грЭС) — такая же, как и предыдущая, но имеет на поверхности рибосомы, благодаря чему наблюдаются шероховатости.
В некоторых случаях в этот список включают транзиторную эндоплазматическую сеть (тЭС). Второе ее название — переходящая. Она находится в зоне стыка двух видов сети.
Шероховатая ЭС может наблюдаться внутри всех живых клеток, исключая сперматозоиды. Однако, в каждом организме она развита в разной степени.
Так, например, грЭС достаточно высокоразвита в плазматических клетках, вырабатывающих иммуноглобулины, в фибробластах, продуцентах коллагена, и в железистых эпителиальных клетках. Последние находятся в поджелудочной железе, где синтезируют ферменты, и в печени, производя альбумины.
Гладкая ЭС представлена клетками надпочечников, которые, как известно, создают гормоны. Также ее можно обнаружить в мышцах, где проходит обмен кальция, и в фундальных желудочных железах, выделяющих хлор.
Также существует два вида внутренних мембран ЭПС. Первый являет собой систему трубочек с многочисленными разветвлениями, они насыщены разнообразными ферментами. Второй тип — везикулы — небольшие пузырьки с собственной мембраной. Они выполняют транспортную функцию для синтезируемых веществ.
Что такое эндоплазматическая сеть
Определение
Эндоплазматическая сеть — внутриклеточный органоид, именуемый иначе эндоплазмати́ческим рети́кулумом. В сокращении обозначают ЭПС либо ЭПР. Представлен в виде разветвлённой ультрамикроскопической величины сетки. Компонентами которой служит система: уплощённых полостей, особого рода пузырьков, канальцев, имеющих мембранное окружение.
Сетка имеет непростую структуру и достаточно сложные взаимосвязи. Кроме того, ретикулярные составные в значительной мере не стабильны, они подвержены частым переменам. ЭПР находится в цитоплазме, разделяет её практически равномерно. Делит на секции, структурируя содержимое. Присутствует исключительно в клетках эукариотического типа.
Агранулярная эндоплазматическая сеть
Расположена в клеточных образованиях: надпочечников — производящих стероидные гормоны, мышечных структур — участвующих в обмене кальция, железистых конструкций желудка — вырабатывающих ионы хлора. Среди прочих видов мембран ЭПР включает: разветвлённые мембранные трубочки, а также везикулы, цистерны, обеспечивающие перемещение синтезированных веществ.
Гладкий ретикулум весьма чувствителен к факторам внешней среды. По этой причине легко подвергается повреждению. Последнее ведёт к ослаблению клетки, а впоследствии и всего организма. Это может повлечь развитие различных болезненных процессов.
ссылка
- Borgese, N., Francolini, M. & Snapp, E. (2006). Архитектура эндоплазматического ретикулума: структуры в движении. Современное мнение в клеточной биологии, 18(4), 358-364.
- Кэмпбелл, Н. А. (2001). Биология: концепции и отношения. Пирсон Образование.
- English, A.R. & Voeltz, G.K. (2013). Структура эндоплазматического ретикулума и взаимосвязь с другими органеллами. Перспективы Колд Спринг Харбор в биологии, 5(4), a013227.
- Эйнард А.Р., Валентич М.А. и Ровасио Р.А. (2008). Гистология и эмбриология человека: клеточные и молекулярные основы. Ed. Panamericana Medical.
- Voeltz, G.K., Rolls, M.M., & Rapoport, T.A. (2002). Структурная организация эндоплазматического ретикулума. Отчеты EMBO, 3(10), 944-950.
Клиническое значение
Нарушения XBP1 приводят к усилению и, следовательно, вызывают более высокую восприимчивость к воспалительным процессам, которые могут даже способствовать развитию болезни Альцгеймера . В толстой кишке аномалии XBP1 связаны с воспалительными заболеваниями кишечника, включая болезнь Крона .
Развернутом ответ белок (УПО) представляет собой клеточный ответ стресс , связанные с эндоплазматической сети. UPR активируется в ответ на накопление развернутых или неправильно свернутых белков в просвете эндоплазматического ретикулума. UPR функционирует, чтобы восстановить нормальную функцию клетки, останавливая трансляцию белка , разрушая неправильно свернутые белки и активируя сигнальные пути, которые приводят к увеличению продукции молекулярных шаперонов, участвующих в укладке белков . Устойчивая сверхактивация UPR связана с прионными заболеваниями, а также с некоторыми другими нейродегенеративными заболеваниями, и ингибирование UPR может стать лечением этих заболеваний.
Образование в клетке
Субъединицы рибосом формируются в ядрышке. Матрицей для синтеза рибосомальной РНК является ДНК. Для полного созревания они проходят несколько этапов:
- Эосома – первая фаза, при этом в ядрышке на ДНК синтезируется лишь рРНК;
- неосома – структура включающая не только рРНК, но и белки, после ряда модификаций выходит в цитоплазму;
- рибисома – зрелая органелла, состоящая из двух субъединиц.
Функции элементов рибосом | ||
---|---|---|
Большая субъединица | Большая субъединица Треугольная, в диаметре 16нм, состоит из 3 молекул РНК и 33 белковых молекул Трансляция, декодирование генетической информации | Трансляция, декодирование генетической информации |
Малая субъединица | Вогнутая, овальная, в диметре 14нм, состоит из 1 молекулы РНК и 21 белковых молекул | Объединение аминокислот, создание пептидных связей, синтез новых молекул белка |
Фосфолипиды
Это амфипатические молекулы; они имеют полярную (гидрофильную) головку и неполярную (гидроболическую) углеродную цепь. Это молекула глицерина, связанная с жирными кислотами и фосфатной группой.
Процесс синтеза происходит на цитозольной стороне мембраны эндоплазматического ретикулума. Коэнзим А участвует в переносе жирных кислот на глицерин-3-фосфат. Благодаря ферменту, закрепленному в мембране, в нее могут быть вставлены фосфолипиды.
Ферменты, присутствующие на цитозольной поверхности ретикулумной мембраны, могут катализировать связывание различных химических групп с гидрофильной частью липида, давая начало различным соединениям, таким как фосфатидилхолин, фосфатидилсерин, фосфатидилэтаноламин или фосфатидилинозитол.
По мере того, как липиды синтезируются, они добавляются только к одной стороне мембраны (помня, что биологические мембраны устроены как липидный бислой). Чтобы избежать асимметричного роста с обеих сторон, некоторые фосфолипиды должны перемещаться на другую половину мембраны.
Однако этот процесс не может происходить спонтанно, поскольку он требует прохождения полярной области липида через внутреннюю часть мембраны. Флипазы — это ферменты, которые отвечают за поддержание баланса между липидами бислоя.
Особенности строения лизосом
Лизосомы имеют вид мембранных мешочков с кислым содержимым. По конфигурации бывают овальными или круглыми. Во всех клетках организма есть лизосомы, исключение – эритроциты.
Особым отличием лизосом от остальных органоидов является наличие во внутренней среде кислых гидролаз. Они обеспечивают распад веществ белковой природы, жиров, углеводов, а также нуклеиновых кислот.
К лизосомальным ферментам принадлежат фосфатазы (маркерный фермент), сульфатаза, фосфолипаза и многие другие. Оптимальная среда для нормальной работы органелл — кислая (pH = 4,5 — 5). При недостаточности ферментов или не эффективной их деятельности, ощелачивании внутренней среды, могут возникнуть лизосомальные болезни накопления (гликогенозы, мукополисахаридозы, болезнь Гоше, Тай-Сакса). Как следствие в клетке накапливаются непереваренные вещества: гликопротеиды, липиды и др.
Одномембранная оболочка лизосом оснащена транспортными белками, которые обеспечивают перенос из органеллы во внутреннюю среду клетки продуктов переваривания.
Строение лизосомы
Есть ли в растительной клетке лизосомы?
Нет. В клетках растений содержатся вакуоли – образования, заполненные соком и заключены в оболочку. Они образуются из провакуолей, отошедших от ЭПС и комплекса Гольджи. Клеточные вакуоли осуществляют ряд важных функций: накопление питательных веществ, поддержание тургора, переваривание органических веществ (что указывает на сходство между растительными вакуолями и лизосомами).
Где образуются лизосомы?
Формирование лизосом идет из пузырьков, отпочковавшихся от аппарата Гольджи. Для образования органелл необходимо также участие зернистой мембраны эндоплазматической сети. Все ферменты лизосом синтезируются рибосомами ЭПС, а затем направляются к аппарату Гольджи.
Функции ЭПС
Эндоплазматическая сеть – это аппарат синтеза и, частично, транспорта веществ цитоплазмы, благодаря которому клетка выполняет сложные функции.
Замечание 2
Функции обоих типов ЭПС связаны с синтезом и транспортом веществ. Эндоплазматическая сеть является универсальной транспортной системой.
Гладкая и шероховатая эндоплазматические сети своими мембранами и содержимым (матриксом) выполняют общие функции:
- разделительную (структурирующую), благодаря чему цитоплазма упорядоченно распределяется и не смешивается, а так же предотвращает попадание в органеллу случайных веществ;
- трансмембранное транспорт, благодаря которому осуществляется перенесение сквозь стенку мембраны необходимых веществ;
- синтез липидов мембраны с участием ферментов, содержащихся в самой мембране и обеспечивающих репродукцию эндоплазматической сети;
- благодаря разнице потенциалов, возникающая между двумя поверхностями мембран ЭС возможно обеспечение проведения импульсов возбуждения.
Кроме того, каждой из разновидностей сети свойственны свои специфические функции.
Основные понятия
Определения
Эукариот — это клеточное образование, в котором имеются такие структуры как: оформленное ядро и мембранного типа органоиды.
Клетка — элементарная структурная единица в системе организма, наделённая способностью к самовозобновлению, возможностью к саморегуляции и самовоспроизведению.
Цитолемма (плазмолемма) — окружающая клетку биологическая мембрана.
Ретикулум даёт возможность значимо увеличить суммарные значения площади внутриклеточных поверхностей. Внутренне содержимое органоида — матрикс — материал, являющийся продуктом местного синтеза. Имеет умеренную плотность. На мембранах ЭПР ведётся большое число первичных синтезов. Производятся востребованные для жизнедеятельности клетки продукты.
Первичными их именуют условно, поскольку молекулы синтезированных компонентов станут подвергаться в последующем химическим преобразованиям. Эти синтетические превращения веществ идут как одновременно, так и опосредованно. Поэтому объём и состав химических включений внутри секций неодинаков. Открываются полости ретикулума в перинуклеарное пространство. Расположена последняя между соприкасающимися участками кариолеммы — ядерной оболочки.
Пример:
Площадь сетки эндоплазматического ретикулума занимает более ½ суммарной площади всех клеточных мембранных конструкций. По морфологии она равнозначна покрову клеточного ядра, с которым составляет единое целое. Мембранный аппарат ЭПС позволяют вести активный транспорт ряда компонентов по градиенту концентрации, то есть от меньшей концентрации к большей.
Продукцией ЭПР служат белки, липиды и ферменты: аденозинфосфатазы и синтезированные мембранные липиды.
Виды лизосом
Различают два вида лизосом. Первичные лизосомы формируются возле аппарата Гольджи и содержат не активированные ферменты.
Вторичные лизосомы, или фагосомы имеют активированные ферменты, которые непосредственно взаимодействуют с расщепленными биополимерами. Как правило, ферменты лизосом активируются при изменении рН в кислую сторону.
Лизосомы также делятся на:
- гетеролизосомы — переваривающие вещества, захваченные клеткой путём фагоцитоза (твердые частицы) или пиноцитоза (поглощение жидкости);
- аутолизосомы — предназначены для разрушения собственных, внутриклеточных структур.
Сводная таблица строения и функций лизосом
Ранняя эндосома | Образуется при эндоцитозе внеклеточного материала. Из эндосомы рецепторы, передавшие (из-за низкого рН) свой груз, переходят обратно на внешнюю оболочку. |
Поздняя эндосома | Из ранней эндосомы в полость поздней эндосомы переходят мешочки с частицами, поглощёнными при пиноцитозе, и пузырьки из пластинчатого комплекса с кислыми ферментами. |
Лизосома | Пузырьки поздней эндосомы переходят к лизосоме, содержат гидролазирующие ферменты и вещества для переваривания. |
Фагосома | Предназначена для расщепления крупных частиц, захваченных путём фагоцитоза. Фагосомы потом соединяются с лизосомой для дальнейшего переваривания |
Аутофагосома | Область цитоплазмы окружена двойной мембраной, формируется при макроаутофагии. Затем соединяется с лизосомой. |
Мультивезикулярные тельца | Одномембраные образования, содержат несколько мелких мембранных мешочков. Образуются при микроаутофагоцитозе, переваривают материал, поступивший снаружи. |
Телолизосомы | Пузырьки, накапливающие непереваренные вещества (чаще всего, липофусцин). В здоровых клетках соединяются с внешней оболочкой и с помощью экзоцитоза оставляют клетку. |
Строение эндоплазматический сети
Ретикулум состоит из разветвленной системы трубочек и цистерн (карманов), которые окружены мембранной оболочкой. Разберем каждую составляющую подробнее.
Мембрана
Она морфологически совпадает с оболочкой клеточного ядра и существует в совокупности. Таким образом получается, что полости ретикулума открываются в межмембранную полость ядерной оболочки. Мембрана ЭПС обеспечивает перемещение элементов против градиента концентрации (от меньшей к большей). Площадь мембран эндоплазматической сети насчитывает более половины общей площади всех мембран клетки.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут
Большое количество веществ синтезируется на ее наружной поверхности. После чего они перемещаются внутрь и далее — к местам последующих биохимических трансформаций.
Цистерны
Они выглядят как сплющенный мембранный диск. Цистерны являются местом сбора белков, предназначенных для секреции, трансмембранных белков плазматической мембраны, а также белков лизосом и др. Достигнув созревания, белки транспортируются в органеллы по цистернам. Там и происходит их изменения: гликозилирование (присоединение составов сахаров к органическим молекулам) и фосфорилирование (перенос остатка фосфорной кислоты к субстрату).
Каналы
Внутренняя зона цитоплазмы заполнена огромным количеством мелких каналов, которые ветвятся, переплетаютсяи соединяются друг с другом. Именно они и образуют сам ретикулум.
Во время синтеза белковой молекулы полипептидная цепочка с рибосомы погружается в канал ЭПС.
Трубочки
Их диаметр находится в пределах от 0,1 мкм до 0,3 мкм. Они заполнены гомогенным содержимым и осуществляют коммуникации между содержимым пузырьков эндоплазматической сети, внешней средой и ядром клетки.
Наглядное строение системы и расположение каждой из ее частей можно увидеть на схеме ниже: