Теория
Под уровнем организации живой материи понимают то функциональное место, которое данная биологическая структура занимает в общей системе организации мира.
Молекулярно-генетический (молекулярный) уровень
Биологическая система
Биологические макромолекулы (нуклеиновые кислоты, белки, углеводы) и другие вещества (липиды, АТФ и т.п.)
Элементарные процессы
Распад и синтез макромолекул в клетке, самосборка и матричное копирование макромолекул, генные мутации и т.д.
Характеристика
На этом уровне элементарной структурной единицей является ген (участок ДНК), а ДНК — носитель наследственной информации у всех живых организмов. С этого уровня начинаются важнейшие процессы жизнедеятельности организма: обмен веществ превращение энергии, передача наследственной информации.
Субклеточный уровень
Биологическая система
Органоиды
Элементарные процессы
Деление полуавтономных органоидов (митохондрии, пластиды), сборка органоидов и т.д.
Характеристика
На уровне субклеточных (надмолекулярных) структур изучают строение и функции органоидов (хромосом, митохондрий, рибосом и др.), а также включений клетки.
Клеточный уровень
Биологическая система
Клетка
Элементарные процессы
Жизненный цикл клетки. Митоз. Мейоз. Амитоз. Метаболизм и т.д.
Характеристика
Клетка — основная структурно-функциональная единица всех живых организмов, элементарная живая система, единица размножения и развития всех живых организмов, обитающих на Земле. Минимальная единица, которой присущи все свойства живого.
Тканевый уровень
Биологическая система
Ткань
Элементарные процессы
Регенерация ткани, дифференциация, специализация. и т.д.
Характеристика
Ткань – совокупность сходных по строению клеток и межклеточного вещества, объединенных выполнением общей функции. Этот уровень присутствует только у многоклеточных организмов
Органный уровень
Биологическая система
Орган
Элементарные процессы
Процессы, связанные с функциями органов: пищеварение, газообмен и т.д.
Характеристика
Орган – структурно-функциональное объединение нескольких типов тканей.
Организменный уровень
Биологическая система
Особь
Элементарные процессы
Процессы онтогенеза (индивидуальное развитие), включающие процессы эмбрионального и постэмбрионального развития, обмен веществ, размножение и т.д.
Характеристика
Организм — целостная одноклеточная или многоклеточная живая система, способная к самостоятельному существованию. Многоклеточный организм образован совокупностью тканей и органов, специализированных на выполнении различных функций.
Популяционно-видовой уровень
Биологическая система
Популяция и вид
Элементарные процессы
Процессы, приводящие к видообразованию: дрейф генов, популяционные волны, дивергенция и т.д.
Характеристика
Популяция – это совокупность организмов одного и того же вида, достаточно долго проживающих на определенной территории и полностью или частично изолированные от других популяций. Вид – совокупность схожих особей, имеющих общее происхождение, свободно скрещивающихся между собой и дающие плодовитое потомство.
Биоценотический (экосистемный, биогеоценотический) уровень
Биологическая система
Биоценоз
Элементарные процессы
Круговорот веществ и энергии, межвидовые взаимодействия, передача энергии по цепям питания, сукцессии и т.д.
Характеристика
Экосистема — биологическая система (биогеоценоз), состоящая из сообщества живых организмов (биоценоз), среды их обитания (биотоп), системы связей, осуществляющей обмен веществом и энергией между ними
Биосферный уровень
Биологическая система
Биосфера
Элементарные процессы
Глобальный круговорот веществ и превращение энергии и т.д.
Характеристика
Биосфера – оболочка Земли, заселенная живыми организмами, находящаяся под их воздействием и занятая продуктами их жизнедеятельности совокупность всех биогеоценозов, включает все явления жизни на Земле. На этом уровне происходит круговорот веществ и превращение энергии, связанные с жизнедеятельностью всех живых организмов.
«Биологические системы»
Код раздела ЕГЭ: 1.2. Биологические системы. Общие признаки биологических систем: клеточное строение, особенности химического состава, обмен веществ и превращение энергии, гомеостаз, раздражимость, движение, рост и развитие, воспроизведение, эволюция.
Биологические системы – это объекты различной сложности, имеющие несколько уровней структурно-функциональной организации и представляющие собой совокупность взаимосвязанных и взаимодействующих элементов. Примеры биологических систем: клетка, ткани, органы, организмы, популяции, виды, биоценозы, экосистемы разных рангов и биосфера.
Биологические системы (или живые системы) отличаются от тел неживой природы совокупностью признаков и свойств, среди которых основными являются:
- клеточное строение (Все существующие на Земле организмы состоят из клеток. Исключением являются вирусы, проявляющие свойства живого только в других организмах.);
- особенности химического состава (Главными особенностями химического состава клетки и многоклеточного организма являются соединения углерода — белки, жиры, углеводы, нуклеиновые кислоты. В неживой природе эти соединения не образуются);
- обмен веществ и превращения энергии (Обмен веществ — совокупность биохимических превращений, происходящих в организме и других биосистемах. Все живые системы являются открытыми системами, через которые непрерывно идут потоки веществ, энергии и информации. К открытым системам относят системы, между которыми и окружающей средой происходит обмен веществ и энергии, например, растения в процессе фотосинтеза улавливают солнечный свет и поглощают воду и углекислый газ, выделяя кислород);
- гомеостаз — это способность биологических систем противостоять изменениям и поддерживать относительное постоянство химического состава, строения и свойств, а также обеспечивать постоянство функционирования в изменяющихся условиях окружающей среды;
- раздражимость — способность организма реагировать на внешние и внутренние раздражители (рефлексы у животных и тропизмы, таксисы и настии у растений);
- движение — возможность активного взаимодействия со средой, в частности, перемещение с места на место, захват пищи и т. п.;
- рост и развитие (Все организмы растут в течение своей жизни. Под развитием понимают как индивидуальное развитие организма, так и историческое развитие живой природы);
- воспроизведение (Способность живых систем воспроизводить себе подобных. В основе размножения лежит процесс удвоения молекул ДНК с последующим делением клеток);
- эволюция — естественный процесс развития живой природы, сопровождающийся изменением генетического состава популяций, формированием адаптаций, видообразованием и вымиранием видов, преобразованием экосистем и биосферы в целом.
Общность химического состава живых систем и неживой природы говорит о единстве и связи живой и неживой материи. Весь мир представляет собой систему, в основании которой лежат отдельные атомы. Атомы, взаимодействуя друг с другом, образуют молекулы. Из молекул в неживых системах формируются кристаллы горных пород, звезды, планеты, вселенная. Из молекул, входящих в состав организмов, формируются живые системы — клетки, ткани, организмы. Взаимосвязь живых и неживых систем отчетливо проявляется на уровне биогеоценозов и биосферы.
Уровни организации живых систем отражают соподчиненность, иерархичность структурной организации жизни. Уровни жизни отличаются друг от друга сложностью организации системы. Клетка устроена проще по сравнению с многоклеточным организмом или популяцией.
Структурная организация — живые системы Земли, характеризующиеся упорядоченностью и сложностью структур на всех уровнях организации, несмотря на то, что построены из тех же химических элементов, что и неживые.
Уровневая организация и эволюция. Основные уровни организации живой природы: клеточный организменный, популяционно-видовой, биогеоценотический, биосферный.
Молекулярный уровень
Признаки биологических объектов довольно различны и зависят от уровней. Самый первый и наименьший — молекулярный. Основными элементами являются:
- атомы;
- молекулы;
- ДНК;
- РНК;
- белки;
- углеводы;
- липиды;
- органические и неорганические молекулы.
Существует наука, которая специализируется на изучении химических процессов и называется она биогеохимия. Основоположником науки стал В. И. Вернадский.
Элементы сочетаются и образуют неорганические соединения. Например, одинаковые атомы являются составляющими таких веществ, как азот, кислород. Это простые неорганические элементы. Сложные имеют в своем составе атомы разного рода. Например, соль или кислота.
Простые и сложные элементы сочетаются друг с другом и образуют органические вещества. Их еще называют малые биомолекулы. К таковым можно отнести моносахариды, нуклеотиды.
Малые биомолекулы в сочетании образуют молекулы более сложного типа — макромолекулы. Это липиды, полисахариды. Макромолекулы соединяются между собой и образуют надмолекулярные комплексы.
Процессы, которые происходят на молекулярном уровне:
- образование веществ;
- преобразование энергии;
- связанные с наследственной информацией.
ОНТОГЕНЕТИЧЕСКИЙ УРОВЕНЬ
Онтогенез
— это индивидуальное развитие организма, начиная от одной клетки (зиготы, образующейся при слиянии яйцеклетки и сперматозоида) до взрослого многоклеточного существа со множеством специализированных тканей и органов. Необходимость объединения этих подуровней в один онтогенетический уровень вызвана двумя причинами. Во-первых, зигота — по сути обычная клетка — уже представляет организм, хотя и на одноклеточной стадии развития. Во-вторых, в природе существуют не только многоклеточные, но и одноклеточные организмы как животного, так и растительного свойства — амеба, инфузория, эвглена, хлорелла и др. Бактерии — особо мелкие и безъядерные (прокариотные) клетки — тоже самостоятельные организмы, хотя живут обычно колониями. Так что понятия «клетка» и «организм» в определенных случаях совпадают.
Из сказанного следует очень важный вывод: клетка
является наименьшей, то есть элементарной живой системой
, так как ей присущи все свойства живого организма, свойства жизни как явления
. Клетка, как и многоклеточный организм способна питаться, поглощать энергию, синтезировать вещества, двигаться, реагировать на раздражители, размножаться, приспосабливаться и д.т
. Этому способствует достаточно высокая степень структурной дискретности — внутреннее расчленение клетки на органоиды, изолированные отсеки — особенно выраженная у высших, эукариотных клеток (рис. 3).
Рис. 3
. Схема организации про- и эукариотной клеток.
Существует нерешенная проблема клеточного уровня (подуровня), связанная с наличием в природе двух типов клеточной организации — прокариот и эукариот. Прокариоты
(доядерные)
— это мелкие (около 1 мкм) клетки, не имеющие ядра и других органоидов, типичных для эукариот. Наследственное вещество — ДНК — лежит свободно в цитоплазме, а прочие функциональные блоки тоже представлены небольшими макромолекулярными комплексами без оболочек. К прокариотам относятся все бактерии и так называемые сине-зеленые водоросли.Эукариоты
(с настоящим ядром)
— крупные (10-50 и более мкм) клетки, в которых ДНК в форме хромосом заключена в ядре и большинство рабочих структур, ферментов организовано в изолированных органоидах. Изолирующую роль для ядра и органоидов выполняют такие же липидно-белковые мембраны, как и мембрана клеточной поверхности. Эукариотную организацию имеют одноклеточные простейшие (амеба, инфузория и другие) и клетки многоклеточных организмов: грибов, растений, животных, включая человека. Суть проблемы не в размерных и даже не в структурных различиях двух типов клеток, а в том, что некоторые органоиды эукариотных клеток, такие как митохондрии и хлоропласты, похожи на прокариот — бактерий и сине-зеленых водорослей. Они имеют собственную ДНК, аппарат синтеза белка (рибосомы), систему энергообеспечения и, таким образом, мало зависят от других структур клетки, в частности от ядерной ДНК. На этом основании разработана симбиотическая гипотеза
о происхождении эукариотной клетки на основе симбиоза (взаимовыгодного объединения) некогда самостоятельных прокариотных клеток. В таком случае про- и эукариотные клетки не только по уровню сложности, но и по происхождению должны представлять разные — низший и высший — подуровни клеточного уровня организации. Этот пример показывает, что приведенная и общепринятая система уровней организации жизни не отражает всей сложности отношений между уровнями и подуровнями. Да и число подуровней можно увеличить, поскольку иерархическая сложность систем на самом деле значительно богаче.
Ткани
и органы
представляют основные промежуточные подуровни между клеткой и организмом
. Естественно, что эти подуровни можно выделить только у многоклеточных животных, растений, грибов.
Например, у человека различают эпителиальную (покровную) ткань, мышечную, нервную и соединительную (рыхлую, плотную, хрящевую, костную, кровь и лимфу). Ткани состоят из клеток и межклеточного связующего вещества. Органы состоят из разных тканей. Так, сердце кроме основной мышечной ткани включает рыхлую соединительную, кровь, нервные элементы и эпителиальные оболочки. Головной мозг наряду с нервными клетками содержит питающие их кровеносные сосуды, желудочки, выстланные специальным эпителием. Многие органы объединены в системы органов (пищеварительную, кровеносную и др.).
Наконец, многоклеточный организм
, как и отдельная клетка, представляет законченный и устойчивый уровень биологической организации
. Организм, или особь, способен к самостоятельному существованию, размножению и развитию
.
Клеточный и тканевой
На клеточном уровне главными структурными компонентами являются клетки и процессы, происходящие в них.
Клетка считается минимальной структурной единицей всего живого. Именно в ней происходят жизненно важные процессы. Она может быть как составляющей многоклеточных организмов, так и выступать в роли самостоятельного организма.
Клетки классифицируются на 2 категории:
- прокариотические;
- эукариотические.
К первым относятся клетки, которые не имеют ядра. Ко вторым — с наличием такового.
Чтобы выживать и выполнять свои функции, клетка должна:
- Получать и преобразовывать энергию, которую она извлекает из окружающей среды.
- Пропускать и перемещать нужные ей вещества с избирательностью.
- Модифицировать генетическую информацию.
- Регулировать внутреннее равновесие.
- Формировать новые клетки по истечении срока жизни предыдущих.
Клетки выполняют все функции, благодаря которым живут, дышат и размножаются состоящие из них организмы. Например, питание, дыхание, регуляция обмен веществ и т. д. Помимо этого, она должна взаимодействовать с мембраной и аналогичными ей элементами.
К первым относятся ткани:
- образовательная (отвечает за рост и образование);
- покровная (защищает растения);
- основная (образует питательные вещества);
- проводящая (транспортирует воду и минеральные вещества) ткани.
К животным тканям относятся:
- эпителиальная (отвечает за защиту);
- соединительная (транспорт веществ, защита организма);
- мышечная (движение тела, опора);
- нервная (отвечает за согласованную работу всех органов).
Одинаковые группы тканей образуют органы, которые составляют следующий организационный уровень.
МОЛЕКУЛЯРНО-ГЕНЕТИЧЕСКИЙ УРОВЕНЬ
На уровне макромолекул
степень сложности систем, по сравнению с обычными молекулами, растет. Однако этот уровень еще не достаточен для возникновения полноценной жизни.
Макромолекулами принято называть очень крупные, обычно полимерные (многозвенные) молекулы. В живых организмах различают четыре типа макромолекул: углеводы, липиды, белки и нуклеиновые кислоты (рис. 2). Они образуют химическую основу клеток, хотя некоторые углеводы и белки входят также в состав межклеточного вещества, обычно вместе с солями (основное вещество хряща, кости).
Рис. 2
. Структура основных макромолекул.
Углеводы
бывают простые — моносахариды (такие как глюкоза, лактоза) и сложные — полисахариды, образованные сотнями и тысячами соединенных моносахаридов. Некоторые полисахариды выполняют опорную функцию — целлюлоза (клетчатка) у растений, хитин у раков, насекомых, грибов. Но в основном углеводы используются как топливо для получения энергии (см. Тему 2).
Липиды,
или жироподобные вещества, имеют длинные «хвосты» из углеродно-водородных единиц, прикрепленные к «головке» — видоизмененной молекуле глицерина. Хвосты отталкивают воду (гидрофобны), поэтому два слоя липидных молекул, обращенные друг к другу хвостами, образуют водо- и иононепроницаемую пленку — мембрану. Из мембран построены оболочки клеток и некоторых внутриклеточных органоидов. Кроме того, липиды, как и углеводы, заключают в себе много энергии и используются в качестве топлива.
Белки
— основные биополимеры, так как выполняют большинство жизненных функций (см. Тему 2). Белковая цепь — полипептид — сложена из большого числа (50-100-500 и более) мономеров — аминокислот (включают аминогруппу -NH2
и кислотную группу -COOH). Имеется 20 разновидностей аминокислот, и чередование их беспорядочно (но строго определенно для каждого вида белка), так что возможное разнообразие белковых цепей бесконечно велико, что и дает возможность белкам выполнять очень разные функции. Наибольшим разнообразием отличаются белки-ферменты
— катализаторы биохимических реакций.
Нуклеиновые кислоты
(от латинского nuсleus — ядро) впервые были выделены из клеточных ядер и представляют самые сложные макромолекулы. Различают дезоксирибонуклеиновую кислоту — ДНК и рибонуклеиновую кислоту — РНК. ДНК — двухцепочечный полимер, РНК — одноцепочечный. Мономерами в обоих случаях являются довольно крупные и сложные молекулы — нуклеотиды. ДНК хранит информацию о структуре всех клеточных белков, РНК способствует ее реализации в момент синтеза новых белков (подробнее об этом см. Тему 3). Фрагмент ДНК, кодирующий структуру одной молекулы белка, называется геном
.
Макромолекулы обычно объединяются в макромолекулярные комплексы
, или даже в особые структуры, называемые органоидами
клетки (по аналогии с органами сложного организма). Типичными органоидами являются рибосомы — элементарные структуры, ведущие синтез белка, миофибриллы — сократимые нити в мышечных клетках, митохондрии — производители клеточной энергии, хромосомы — хранители ДНК, то есть генов.
Макромолекулы и их комплексы, гены, клеточные органоиды отвечают за отдельные свойства жизни — наследственность, синтезы, движение, энергетический обмен и др., но и эти свойства могут проявляться только в системе целостной клетки. Даже вирусы
, которые считаются внеклеточными формами жизни, вне клетки представляют фактически макромолекулярные кристаллы, не способные размножаться, синтезировать белки, усваивать энергию. Поэтому некоторые ученые вообще не считают вирусы живыми образованиями.
Таким образом, отдельные молекулярно-генетические структуры не обеспечивают того критического уровня сложности, который можно было бы назвать полноценной жизнью.
Уровни организации живой природы
Иерархичность организации живой материи позволяет условно подразделить ее на ряд уровней.
Уровень организации живой материи – это функциональное место биологической структуры определенной степени сложности в общей иерархии живого. Выделяют следующие уровни организации живой материи: молекулярный, субклеточный, клеточный, органно-тканевой, организменный, популяционно-видовой, биоценотический, биогеоценотический, биосферный.
1. Молекулярный (молекулярно-генетический).
На этом уровне живая материя организуется в сложные высокомолекулярные органические соединения, такие, как белки, нуклеиновые кислоты и др.
2. Субклеточный (надмолекулярный).
На этом уровне живая материя организуется в органоиды: хромосомы, клеточную мембрану, эндоплазматическую сеть, митохондрии, комплекс Гольджи, лизосомы, рибосомы и другие субклеточные структуры.
3. Клеточный. На этом уровне живая материя представлена клетками. Клетка является элементарной структурной и функциональной единицей живого.
4. Органно-тканевой. На этом уровне живая материя организуется в ткани и органы. Ткань – совокупность клеток, сходных по строению и функциям, а также связанных с ними межклеточных веществ. Орган – часть многоклеточного организма, выполняющая определенную функцию или функции.
5. Организменный (онтогенетический).
На этом уровне живая материя представлена организмами. Организм (особь, индивид) – неделимая единица жизни, ее реальный носитель, характеризующийся всеми ее признаками.
6. Популяционно-видовой.
На этом уровне живая материя организуется в популяции. Популяция – совокупность особей одного вида, образующих обособленную генетическую систему, которая длительно существует в определенной части ареала относительно обособленно от других совокупностей того же вида. Вид – совокупность особей (популяций особей), способных к скрещиванию с образованием плодовитого потомства и занимающих в природе определенную область (ареал).
7. Биоценотический.
На этом уровне живая материя образует биоценозы. Биоценоз – совокупность популяций разных видов, обитающих на определенной территории.
8. Биогеоценотический. На этом уровне живая материя формирует биогеоценозы. Биогеоценоз – совокупность биоценоза и абиотических факторов среды обитания (климат, почва).
9. Биосферный. На этом уровне живая материя формирует биосферу. Биосфера – оболочка Земли, преобразованная деятельностью живых организмов.
Необходимо отметить, что биогеоценотический и биосферный уровни организации живой материи выделяют не всегда, поскольку они представлены биокосными системами, включающими не только живое вещество, но и неживое. Также часто не выделяют субклеточный и органно-тканевой уровни, включая их в клеточный и организменный соответственно.
Предсказать свойства каждого следующего уровня на основе свойств предыдущих уровней невозможно так же, как нельзя предсказать свойства воды, исходя из свойств кислорода и водорода. Такое явление носит название эмерджентность, то есть наличие у системы особых, качественно новых свойств, не присущих сумме свойств ее отдельных элементов. С другой стороны, знание особенностей отдельных составляющих системы значительно облегчает ее изучение. Таким образом, в науке вообще, и в экологии в частности, целесообразно оптимальное сочетание двух подходов к познанию окружающего мира – анализа и синтеза. Анализ –
расчленение объекта на отдельные составляющие его элементы и их последующее изучение. Синтез – исследование объекта в целом.
Предыдущие материалы:
|
Следующие материалы:
|
Внимание!
Если вам нужна помощь в написании работы, то рекомендуем обратиться к
профессионалам. Более 70 000 авторов готовы помочь вам прямо сейчас
Бесплатные
корректировки и доработки. Узнайте стоимость своей работы.
Расчет
стоимостиГарантииОтзывы