Ссылки
- Альбертс, Б., Брэй, Д., Хопкин, К., Джонсон, А. Д., Льюис, Дж., Рафф, М.,… и Уолтер, П. (2013). Основная клеточная биология. Наука о гирляндах.
- Ганнинг Б. Э. и Стир М. В. (1996). Биология растительной клетки: структура и функции. Джонс и Бартлетт Обучение.
- Лодиш, Х., Берк, А., Зипурски, С.Л., Мацудаира, П., Балтимор, Д., и Дарнелл, Дж. (2000). Молекулярная клеточная биология 4-е издание. Национальный центр биотехнологической информации, книжная полка.
- Nabors, M. W. (2004).Введение в ботанику (№ 580 N117i). Пирсон,.
- Соломон, Э. П., Берг, Л. Р., и Мартин, Д. У. (2011). Биология (9-е изд.). Брукс / Коул, Cengage Learning: США.
Характеристика химического состава
Консистенция цитоплазмы похожа на желе: более вязкое ближе к плазматической мембране, жидкое — внутри. В составе преобладают вода, небольшие молекулы и макромолекулы, органические и неорганические ионы. Содержание воды достигает 70–90%. На молекулы биополимеров (белков, жиров, углеводов), минеральных солей, ионов приходится 10–20% состава гиалоплазмы. Также присутствуют витамины, ферменты, запасные вещества.
Состав цитозоля:
- глюкоза и другие простые сахара;
- полисахариды;
- аминокислоты;
- нуклеиновые кислоты;
- жирные кислоты;
- ионы калия, натрия, кальция, магния.
Среди органических веществ больше присутствует аминокислот, из неорганических — ионы калия, натрия. Молекулы веществ хранятся в гиалоплазме и транспортируются в части клетки, где протекают биохимические реакции. Состав цитоплазмы меняется с возрастом клетки, с изменением физиологического состояния.
Органеллы
Пластиды
Пластиды — органеллы растительной клетки, состоящие из белковой стромы, окружённой двумя липопротеидными мембранами. Внутренняя из них образует внутрь выросты (тилакоиды, или ламеллы).
Пластиды, как и митохондрии, являются самовоспроизводящимися органеллами и имеют собственный геном — пластом, а также рибосомы.
У высших растений все пластиды происходят от общего предшественника — пропластид, которые развиваются из двумембранных инициальных частиц.
Пластиды присущи исключительно растениям. Различают три основных типа пластид:
- Лейкопласты. Эти пластиды не содержат никаких пигментов, внутренняя мембранная система, хотя и присутствует, но развита слабо. Разделяют амилопласты, запасающие крахмал, протеинопласты, содержащие белки, элайопласты (или олеопласты), запасающие жиры. Этиопласты — это бесцветные пластиды растений, которые выращивали без освещения. При наличии света они легко превращаются в хлоропласты.
- Хромопласты — пластиды жёлто-оранжевого цвета, обусловленного наличием в них пигментов каротиноидов: каротина, ксантофилла, лютеина, зеаксантина и др. Образуются из хлоропластов при разрушении в них хлорофилла и внутренних мембран. Кроме того, хромопласты мельче хлоропластов по размерам. Каротиноиды присутствуют в хромопластах в виде кристаллов или растворёнными в каплях жира (такие капли называют пластоглобулами). Биологическая роль хромопластов до сих пор неясна.
Хлоропласты — пластиды в виде двояковыпуклой линзы, окружённые оболочкой из двух липопротеидных мембран. Внутренняя из них образует длинные выросты в белковую строму — тилакоиды стромы и более мелкие, расположенные стопками тилакоиды гран, соединённые между собой тилакоидами стромы. С белковым слоем мембран тилакоидов связаны пигменты: хлорофилл и каротиноиды. В хлоропластах осуществляется фотосинтез. Первичный крахмал, синтезированный хлоропластами, откладывается в строме между тилакоидами.
Гигантские хлоропласты водорослей, присутствующие в клетке в единственном числе, называются хроматофорами. Их форма может быть очень разнообразной.
Вакуоли
Вакуоль — полость в клетке, заполненная клеточным соком и окружённая мембраной — тонопластом. Вещества, содержащиеся в клеточном соке, определяют величину осмотического давления и тургор клеточной оболочки.
Вакуоли образуются из провакуолей — небольших мембранных пузырьков, отшнуровывающихся от ЭПР и комплекса Гольджи. Потом пузырьки сливаются, образуя более крупные вакуоли. Только у старых вакуолей все вакуоли могут сливаться в одну гигантскую центральную вакуоль, обычно же клетка, помимо центральной вакуоли, содержит мелкие вакуоли, наполненные запасными веществами и продуктами обмена.
Вакуоли выполняют в клетке следующие основные функции:
- создание тургора;
- запасание необходимых веществ;
- отложение веществ, вредных для клетки;
- ферментативное расщепление органических соединений (это сближает вакуоли с лизосомами).
Строение клетки грибов
Схема строение клетки грибов
Клетки грибов похожи на клетки растений и животных в том, что у них есть ядро, клеточная мембрана, цитоплазма и митохондрии. Как и клетки растений, клетки грибов имеют клеточную стенку, но не из целлюлозы, а из хитина.
Протопласт
Все содержимое клетки, за исключением клеточной стенки называется протопластом. В нем отсутствуют хлоропласты, но есть другие клеточные структуры, такие как плазматическая или клеточная мембрана, вакуолизированная цитоплазма, клеточные органеллы и одно или несколько ядер. Давайте более подробно рассмотрим основные органеллы и структуры клеток грибов.
Клеточная мембрана
Это мягкая, очень тонкая мембрана, которая плотно окружает протопласт. Плазматическая мембрана прижимается к клеточной стенке, за исключением случайных инвагинаций в некоторых областях. Инвагинация имеет вид свернутого извитого кармана или мешочка, содержащего гранулированный или везикулярный материал.
Цитоплазма
Внутри клеточной мембраны находится бесцветная цитоплазма, в которой могут возникать вакуоли, заполненные соком. В молодых гифах и кончиках гифов цитоплазма выглядит довольно однородной. В цитоплазму погружены структуры, известные как органеллы и включения.
Органеллы – это живые клеточные структуры, каждая из которых выполняет определенную функцию. Включения безжизненны, не имеют специфической функции и, следовательно, не важны для выживания клеток.
К клеточным органеллам относятся эндоплазматический ретикулум, митохондрии, рибосомы, аппарат Гольджи и вакуоли. Ломасомы – это мембранозные структуры, лежащие между клеточной стенкой и плазматической мембраной. Примерами включений являются хранящиеся пищевые продукты (гликоген и масляные капли), пигменты и секреторные гранулы.
Эндоплазматическая ретикулум
Эндоплазматический ретикулум состоит из системы мембран или микротрубчатых структур, обычно окруженных небольшими гранулами, которые некоторые ученые сравнивают с рибосомами. У многих грибов эндоплазматическая сеть сильно везикулярна. Обычно она более рыхлая и неравномерная, чем в клетках зеленых растений.
Митохондрии
Цитоплазма содержит небольшие, как правило, сферические тельца, известные как митохондрии. Каждая митохондрия окружена двойной мембраной. Внутренняя мембрана складывается, образуя кристы, которые имеют форму параллельных плоских пластинок или неправильных канальцев.
Кристы содержат ту же жидкость, которая заполняет пространство между двумя мембранами. Митохондрии функционируют как электростанции клетки. Принципиальной разницы между митохондриями грибов и зеленых растений нет. Однако, кристы митохондрий грибов меньше, более плоские и неправильной формы, чем у растений.
Аппарат Гольджи
Аппарат Гольджи, также называемый комплексом Гольджи или телом Гольджи, мембраносвязанная органелла эукариотических клеток, состоящая из ряда уплощенных, сложенных друг на друга мешочков, называемых цистернами. Аппарат Гольджи отвечает за транспортировку, модификацию, упаковку белков и липидов в везикулы для транспортировки за пределы или внутри клетки. Он расположен в цитоплазме рядом ядром и эндоплазматическим ретикулумом.
Вакуоль
В цитоплазме молодых гиф или клеток грибов отсутствуют вакуоли. Они появляются в более зрелых клетках. С возрастом они увеличиваются и проявляют тенденцию к слиянию и, в конечном итоге, уменьшают цитоплазму до тонкого выстилающего слоя непосредственно внутри клеточной стенки.
Ядро
Цитоплазма в отдельных клетках содержит одно, два или несколько шаровидных или эллипсоидных ядер, которые в соматической части имеют небольшие размеры и обычно составляют от 1 до 2 или 3 мкм в диаметре.
Структурно ядро состоит из:
- Центральное, плотное тело с чистой областью вокруг него
- Хроматиновые нити
- Вся структура окружена определенной ядерной мембраной
Включения
Цитоплазма содержит различного рода включения, например, липидные глобулы, гранулы гликогена, масла и углевод трегалоза, белковый материал и волютин. Гликоген может находиться в вакуолях.
Крахмальных зерен нет. Из пигментов грибам не хватает хлорофилла. Каротиноиды могут встречаться по всей цитоплазме, концентрироваться в липидных гранулах или распределяться в клеточной стенке. Цитоплазма также секретирует несколько видов ферментов, энзимов и органических кислот.
Мне нравится2Не нравится1
Запасающие ткани (запасающая паренхима)
Запасающие ткани высших растений бывают различными по происхождению, также различия заключаются в том, какие именно вещества и в какой части клетки запасаются.
Главное запасное вещество высших растений – это крахмал. Крахмал синтезируется и откладывается в виде зерен в специальных пластидах – амилопластах. Крахмальные зерна увеличиваются в размере и растягивают пластиду. В результате клетка такой запасающей ткани содержит множество крупных зерен крахмала – примером может служить запасающая ткань в клубне картофеля.
Если растение запасает питательные вещества не на очень долгий срок, то они могу откладываться в виде сахаров в вакуолях клеток. Например, в сочной ткани многих плодов. Сочный плод рассчитан на то, что его съест некое животное, а значит, он должен быть привлекательным для него – питательным и сладким.
В эндосперме некоторых семян запасание происходит за счет утолщения клеточной стенки, в которой откладывается гемицеллюлоза.
При прорастании семени клетки частично растворяют свои клеточные стенки и потребляют углеводы, из которых она состоит. В качестве запасного вещества может выступать белок. Он может откладываться в вакуолях (алейрон) или в лейкопластах. В цитоплазме запасаются жиры в виде сферосом.
Кроме питательных веществ, ткань может запасать воду. Клетки водоносной ткани бывают ослизнены и имеют крупные вакуоли, в которых сохраняется влага.
Рисунок: Запасающая паренхима клубня картофеля. 1 – крахмальные зерна.
Проводящие ткани (ксилема, флоэма)
Ксилема – сложная ткань, то есть состоит из клеток разной морфологии. В состав ксилемы одновременно входят и проводящие, и механические, и запасающие элементы.
Ксилема проводит воду с растворенными в ней минеральными веществами от корней по всему остальному телу растения. Таким образом, по ксилеме в основном осуществляется восходящий ток. Проводящие элементы ксилемы – это сосуды и трахеиды. Следует помнить, что ксилема голосеменных растений лишена сосудов. Трахеида образуется из клетки удлиненной формы, ее клеточная стенка утолщается и лигнифицируется, то есть одревесневает. Протопласт при этом отмирает и в результате получается мелкий капилляр, по которому может транспортироваться вода. Прочные клеточные стенки предохраняют просвет капилляра от схлопывания. От трахеиды к трахеиде вода транспортируется через специальные поры. Сосуд, по сути, является таким же капилляром, как и трахеида, но более длинным, широкопросветным и многоклеточным. Каждый сосуд состоит из отдельных клеток (члеников сосуда) с одревесневшей оболочкой и отмершим протопластом, между члениками сосуда формируются уже не поры, а перфорационные пластинки (то есть сквозные отверстия). Между сосудами, как и между трахеидами, есть поры, через которые также может транспортироваться вода. Кроме проводящих элементов, в состав ксилемы входят механические волокна – волокна либриформа. Это удлиненные клетки, похожие на трахеиды, однако их клеточные стенки очень сильно утолщены и лигнифицированы. Просвет таких капилляров слишком мал для осуществления транспорта воды, зато толстая и прочная клеточная стенка выполняет механическую функцию подобно склеренхиме. Ксилема в основном состоит из мертвых клеток, обычно небольшой процент живых клеток представлен древесинной паренхимой. Эти клетки в основном выполняют запасающую функцию.
Флоэма, как и ксилема, – это сложная ткань, которая состоит из разных клеток. В состав флоэмы входят проводящие механические и паренхимные (в том числе запасающие) элементы.
Флоэма транспортирует раствор питательных веществ, в основном это углеводы, образовавшиеся в результате фотосинтеза. Поскольку фотосинтез происходит преимущественно в листьях, а питательные вещества нужно доставлять во все части растения, в том числе и в корни, по флоэме преимущественно осуществляется нисходящий ток веществ. Проводящими элементами являются ситовидные клетки. Это живые клетки, они имеют вытянутую форму, а в их стенках формируются так называемые ситовидные поля. Ситовидное поле – это участок клеточной стенки, где близко друг к другу расположено множество плазмодесм. Через ситовидные поля происходит транспорт веществ от одной ситовидной клетки к другой. У покрытосеменных растений проводящими элементами флоэмы являются ситовидные трубки. Ситовидная трубка – это более длинная многоклеточная проводящая структура. Состоит она из одного ряда клеток, называемых члениками ситовидной трубки. В местах контакта члеников друг с другом формируются ситовидные пластинки – участки клеточной стенки, где расположено одно или несколько сближенных ситовидных полей. Вещества транспортируются по внутреннему содержимому живой клетки. Однако в ситовидных элементах деградируют многие органеллы, в том числе и ядро. Таким образом, ситовидная клетка и членик ситовидной трубки находятся в «полуживом» состоянии. При этом существуют специальные клетки, которые поддерживают ситовидные элементы в этом состоянии, обеспечивают и регулируют их жизнедеятельность. Такие клетки называются клетками-спутницами у члеников ситовидных трубок, а ситовидные клетки поддерживают специальные клетки Страсбургера. Кроме проводящих элементов во флоэме, как и в ксилеме, находятся паренхимные (запасающие) клетки, а также механические элементы (лубяные волокна). Волокна обычно представлены удлиненными клетками с толстой одревесневшей клеточной стенкой.
Рисунок: Проводящие ткани. А – ксилема; Б – флоэма. 1 – сосуды ксилемы; 2 – трахеиды; 3 – клетки древесной паренхимы; 4 – поры; 5 — ситовидные трубки; 6 – клетки – спутницы; 7 – ситовидные поля; 8 – клетки лубяной паренхимы.
Эукариотический клеточный цикл
клеточный цикл это жизненный цикл клетки. В течение этого цикла он растет и делится. Контрольные точки существуют между всеми этапами, так что белки могут определить, готова ли клетка начать следующую фазу цикла.
Покой (G0)
Покой, также известный как старение или покой, – это фаза, в которой клетка активно не делится. Он также известен как Gap 0 или G0. Эта стадия считается началом клеточного цикла, хотя это тот, который клетки могут достичь, а затем прекратить делиться на неопределенный срок, что завершает клеточный цикл. Печень, желудок клетки почек и нейрон – все это примеры клеток, которые могут достигать этой стадии и оставаться в ней в течение длительных периодов времени. Это также может произойти, когда ДНК клетки повреждена. Однако большинство ячеек вообще не переходят в стадию G0 и могут делиться бесконечно на протяжении всей жизни организм.
интерфаза
В интерфаза клетка растет и усваивает питательные вещества при подготовке к делению. Интерфаза занимает около 90 процентов клеточного цикла. Он состоит из трех частей: Gap 1, Synthesis и Gap 2.
- Разрыв 1 (G1) также известен как фаза роста. Клетка становится больше и увеличивает запас белков, а также органелл, таких как митохондрии, вырабатывающие энергию.
- Синтез (S) фаза репликации ДНК Во время синтеза хромосомы реплицируются так, что каждый хромосома состоит из двух сестринские хроматиды, В конце этой фазы количество ДНК в клетке удваивается.
- Разрыв 2 (G2) это еще одна фаза роста. Клетка становится еще больше, чтобы подготовиться к митотическому делению.
Митоз (М)
Митоз или М-фаза, когда клетка начинает организовывать свою дублированную ДНК для разделения на две части. дочерние клетки, Хромосомы разделяются так, что одна из каждой хромосомы попадает в каждую дочернюю клетку. Это приводит к тому, что дочерние клетки имеют идентичные хромосомы с родительской клеткой. Сам Митоз делится на профаза, метафазы, анафаза, а также телофаза, которые отмечают различные точки в процессе разделения ДНК. Затем за митозом следует процесс, называемый цитокинез, в течение которого клетка разделяет свои ядра и другие органеллы при подготовке к делению, а затем физически делится на две клетки.
Ядро
Ядро — самая заметная и обычно самая крупная органелла клетки. Оно впервые было подробно исследовано Робертом Броуном в 1831 году. Ядро обеспечивает важнейшие метаболические и генетические функции клетки. По форме оно достаточно изменчиво: может быть шаровидным, овальным, лопастным, линзовидным.
Ядро играет значительную роль в жизни клетки. Клетка, из которой удалили ядро, не выделяет более оболочку, перестаёт расти и синтезировать вещества. В ней усиливаются продукты распада и разрушения, вследствие этого она быстро погибает. Образование нового ядра из цитоплазмы не происходит. Новые ядра образуются только делением или дроблением старого.
Внутреннее содержимое ядра составляет кариолимфа (ядерный сок), заполняющая пространство между структурами ядра. В нём находится одно или несколько ядрышек, а также значительное количество молекул ДНК, соединённых со специфическими белками — гистонами.
Строение ядра
Вентиляционные ткани (аэренхима)
Аэренхима – это вентиляционная ткань или ткань проветривания. Главную функцию аэренхимы выполняют крупные межклетники, по которым и циркулирует воздух. Воздух необходим высшим растениям как для дыхания, так и для процессов фотосинтеза. Наличие аэренхимы характерно для водных или околоводных высших растений. Воздух, находящийся в системе полостей аэренхимы, не только вентилирует все части растения (в особенности подводные), но и придает им плавучесть, как, например, листьям кувшинки.
Аэренхима обычно имеет вид системы полостей с однослойными стенками. Клетки, слагающие стенки полостей могут иметь вытянутую форму или же могут быть шарообразной формы. Сами полости при этом в некоторых местах имеют тонкие пленчатые перегородки из одного ряда мелких клеток. Клетки этих перегородок имеют звездчатую форму, таким образом, между «лучей» данных клеток остаются мелкие отверстия в пленке (межклетники). Данные перегородки не мешают выполнять вентиляционную функцию аэренхиме, пропуская воздух через эти мелкие отверстия. Однако, если произойдет повреждение и полость начнет заполняться водой, то такая перегородка не попустит капельно-жидкую воду, поскольку поверхностное натяжение жидкости не позволит ей пройти сквозь мелкие отверстия. Такая аэренхима встречается у кувшинки, ириса, рдеста и т.д.
В другом случае аэренхима может быть целиком представлена только звездчатыми клетками. Такие клетки формируют трехмерную рыхлую ткань, похожую по консистенции на вату. Между «лучей» этих клеток также формируется одно большое общее межклеточное пространство, по которому циркулирует воздух. Такой тип аэренхимы характерен для ситников, осок, некоторых злаков и т.д. Также рыхлая аэренхима, многократно преломляя свет, придает белый цвет лепесткам некоторых растений.
Рисунок: Аэренхима. А – аэренхима на поперечном срезе стебля; Б – клетки пленчатой перегородки, разделяющей полости аэренхимы; В – аэренхима из трехмерно расположенных звездчатых клеток.
Вентиляционная ткань выполняет свою функцию за счет многочисленных увеличенных межклетников. Стоит помнить, что межклетники по типу происхождения делятся на три типа. Схизогенные межклетники образовались в результате простого расхождения клеток в пространстве. Лизигенные полости формируются в результате деградации (лизиса) некоторых клеток. Крупные рексигенные полости являются результатом механического разрыва тканей, например, в центре черешков или стеблей некоторых растений.
# Анатомия растений
# 10 класс
# 11 класс
Органеллы свойственные только растительной клетке
Органеллы растительной клетки
Клетки животных в отличие от клеток растений не содержат вакуолей, пластид, клеточной стенки.
Клеточная стенка формируется из клеточной пластинки, образуя первичную и вторичную клеточную оболочки.
Первичная клеточная стенка встречается в недифференцированных клетках. В ходе созревания между мембраной и первичной клеточной стенкой закладывается вторичная оболочка. По своему строению она сходна с первичной, только имеет больше целлюлозы и меньшее количество воды.
Вторичная клеточная стенка оснащена множеством пор. Пора – это место, где между первичной оболочкой и мембраной отсутствует вторичная стенка. Поры размещены попарно в смежных клетках. Размещенные рядом клетки связываются друг с другом плазмодесмой – это канал, представляющий собой тяж цитоплазмы, выстланный плазмолеммой. Через него клетки обмениваются синтезированными продуктами.
Функции клеточной стенки:
- Поддержание тургора клетки.
- Придает форму клеткам, выполняя роль скелета.
- Накапливает питательные продукты.
- Защищает от внешнего воздействия.
Вакуоли – органеллы, наполненные клеточным соком, участвуют в переваривании органических веществ (сходны с лизосомами животной клетки). Образуются при помощи совместной работы ЭПС и комплекса Гольджи. Сначала формируется и функционирует несколько вакуолей, во время старения клетки они сливаются в одну центральную вакуоль.
Пластиды – автономные двухмембранные органеллы, внутренняя оболочка имеет выросты – ламеллы. Все пластиды делят на три типа:
- Лейкопласты – безпигментные образования, способны запасать крахмал, белки, липиды;
- хлоропласты – зеленные пластиды, содержат пигмент хлорофилл, способны к фотосинтезу;
- хромопласты – кристаллы оранжевого цвета, из-за наличия пигмента каротина.
Что такое клеточная стенка?
Клетки – это самая элементарная единица жизни (хотя вирусы и самовоспроизводящаяся РНК также заслуживают внимания). Эти крошечные карманы генетической информации и молекулярных механизмов являются строительными блоками всего живого на Земле. Клетки бывают разных форм и размеров. Грибы, растения, животные и бактерии обладают уникальными клеточными свойствами.
Хотя все эукариотические клетки имеют органеллы, ядро и плазматическую мембрану, только растения и грибы обладают прочными клеточными стенками. Эти стенки придают их клеткам жесткость и структуру. В то время как клетки животных мягкие, для придания им структуры требуются кости, растения и грибы поддерживаю свою структуру благодаря клеточным стенкам.
Строение и функции лейкопластов
Лейкопласты — это органоиды клетки, в которых накапливаются питательные вещества. Органеллы имеют две оболочки: гладкую наружную и внутреннюю с несколькими выступами.
Лейкопласты на свету превращаются в хлоропласты (к примеру зеленые клубни картофеля), в обычном состоянии они бесцветны.
Форма лейкопластов шаровидная, правильная. Они находятся в запасающей ткани растений, которая заполняет мягкие части: сердцевину стебля, корня, луковиц, листьев.
Строение лейкопласта
Функции лейкопластов зависят от их вида (в зависимости от накапливаемого питательного вещества).
Разновидности лейкопластов:
- Амилопласты накапливают крахмал, встречаются во всех растениях, так как углеводы основной продукт питания растительной клетки. Некоторые лейкопласты полностью наполнены крахмалом, их называют крахмальными зернами.
- Элайопласты продуцируют и запасают жиры.
- Протеинопласты содержат белковые вещества.
Лейкопласты также служат ферментной субстанцией. Под действием ферментов быстрее протекают химические реакции. А в неблагоприятный жизненный период, когда процессы фотосинтеза не осуществляются, они расщепляют полисахариды до простых углеводов, которые необходимы растениям для выживания.
В лейкопластах не может происходить фотосинтез, потому что они не содержат гран и пигментов.
Луковицы растений, в которых содержится много лейкопластов, могут переносить длительные периоды засухи, низкую температуру, жару. Это связано с большими запасами воды и питательных веществ в органеллах.
Предшественниками всех пластид является пропластиды, небольшие органоиды. Допускают, что лейко — и хлоропласты способны трансформироваться в другие виды. В конечном итоге после выполнения своих функций хлоропласты и лейкопласты становятся хромопластами — это последняя стадия развития пластид.