10 катастрофических событий, ожидающих нашу солнечную систему

Измерения расстояния до солнца в древней Греции

Во времена существования Древней Греции одной из самых важных наук была геометрия. Благодаря широким познаниям в этой области науки древние греки смогли сделать множество астрономических открытий, в том числе и измерить расстояние до Солнца, без каких-либо специальных инструментов. Главным методом исследования звездного пространства было наблюдение за небом.

Предположения Аристарха Самосского

Древних греков также интересовал вопрос удаленности светила от Земли, однако до наших дней дошло очень мало работ. Одной из них является запись Аристарха Самосского, жившего в III веке до н.э. В ней он отобразил , Солнца и Луны, а также расстояние между ними.

Главным отличием в работе этого древнегреческого ученого была научная обоснованность, а не только догадки. Он сделал это с помощью геометрических формул, что было необычным подходом для того времени, когда в большей степени ценились теории и предположения.

Сначала он провёл наблюдения за фазами Луны, ее движением, а также отследил солнечные и лунные затмения. Затем применил теорему Пифагора, взяв за основания треугольника расстояния между Луной и Землей, а также Луной и Солнцем, а в качестве гипотенузы расстояние от Земли до Солнца. На основе этих данных Аристарх Самосский не только предположил, но и обосновал то, что Луна имеет форму шара. После этого математик определил отношения упомянутых небесных тел между собой и выяснил, что Солнце находится в 20 раз дальше от планеты, чем Луна.

Современные ученые проверили записи Аристарха Самосского и сделали вывод, что тот ошибся – в реальности звезда в десятки раз больше, чем в его вычислениях. Тем не менее, в своё время работа древнегреческого ученого внесла большой вклад в изучение Солнечной системы и всех небесных тел, которые находятся в ней.

Измерения Гиппарха Никейского

Гиппарх Никейский, живший во II веке до н.э., считается одним из основоположников астрономии. Его вклад в эту науку заключается в следующем:

  • введение тригонометрических методов при изучении звёзд;
  • увеличении точности измерений благодаря применению специальных приспособлений – секстанта и квадранта;
  • создание каталога звезд;
  • создание системы звёздных величин;
  • расчет прецессии равноденствий;
  • теории о затмениях.

Гиппарх Никейский

Также этот древнегреческий ученый затронул вопрос о расстоянии от . Он взял за основу то, что светило находится дальше спутника Земли, и предположил, что минимальное расстояние до Луны составляет 71 радиус Земли, а максимальное – 83. Затем, используя уже полученные данные и наблюдения за солнечными созвездиями, Гиппарх Никейский выдвинул теорию, что дистанция до Солнца составляет от минимума в 490 земных радиусов (3,115 млн. км.) до максимума в 2550 (16,21 млн. км.).

Расстояние от Солнца до Луны

В среднем расстояние от Земли до Солнца равно 149,6 млн км. От Солнца до Луны оно примерно такое же. Но чтобы определить точное значение, надо учитывать, когда она ближе к звезде, а когда дальше от нее. Во всех фазах оно будет несколько отличаться.

Луна — единственный естественный спутник, находящийся так близко к Солнцу. Такие планеты, как Венера и Меркурий, не имеют своих спутников. Предположительно это связано с тем, что они медленно вращаются. Ни одно небесное тело не сможет удержаться на их орбите.

Расстояние в космосе измеряется сотнями и тысячами световых лет. Современные технологии пока не позволяют человеку путешествовать в открытом космосе. Остается лишь исследовать его с поверхности планеты или использовать для этого управляемые космические аппараты. Методы измерения расстояний между небесными телами постоянно совершенствуются. Сегодня самой передовой является технология лазерной локации.

Расстояние от Земли до Солнца примерно равняется расстоянию от Солнца и до Луны. Credit: otvet.imgsmail.ru.

Перемещение в рамках галактики

Движение Солнечной системы в галактике было открыто англо-немецким астрономом Уильямом Гершелем. Он определил, что ход Солнца направлен к звезде Маасим, или Лямбде в Геркулесе (со скоростью, равной 20 км/с). Современные расчеты всего на десять градусов отличаются от расчетов Уильяма Гершеля. Это пекулярное, или общее движение. Также происходит движение солнечной системы в галактике, которое астрономы наименовали переносным. Солнце, вместе с ближайшими звездами, которые обращаются вокруг галактического центра, устремлено к созвездию Лебедя (со скоростью, равной 200 – 250 км/с)

Звезды, пыль и газ вращаются с разной стремительностью. Это зависит от их местоположения и удаленности от центра. Типичным для спиральных скоплений является то, что и светила, расположенные ближе к ядру, и более удаленные объекты вращаются с примерно одинаковой орбитальной скоростью. Но в Млечном Пути объекты, чьи орбиты приближены к центру вращаются медленнее, чем те, что удалены. Солнце вращается по орбите, имеющей форму почти правильной окружности. Скорость составляет 828000 километров в час по данным, опубликованным в 2009 году. Полный виток вокруг центра диска совершается примерно за 230 миллионов лет, что является галактическим годом.

Окрестности Млечного пути и его гало.

Вдобавок к орбитальному вращению, происходят также колебания в вертикальном направлении в плоскости Млечного Пути. Пересечение этой плоскости совершается один раз в 30 миллионов лет. Это означает, что Солнце меняет местоположение из северной в южную часть Млечного Пути и наоборот. Определено также, что в данный момент Солнце располагается в северной полусфере (20-25 парсек от плоскости диска). В настоящий момент совершается прохождение Местного межзвездного облака (ММО). Система вошла в него примерно 50 — 150 тысяч лет тому назад, и по подсчетам ученых выйдет из его пределов через 20 тысяч лет.

Как добраться до Солнца

Можно ли добраться на ракете до горячей звезды? В принципе, долететь до Солнца для современного человека – не проблема.

Суть состоит в том, что после взлёта с Земли, аппарат должен замедлить свою скорость настолько, чтобы она стала меньше скорости движущейся по орбите Земли.

Сойдя с орбиты, аппарат начнёт притягиваться Солнцем, и по спирали падать на его поверхность. Стоит лишь помнить, что это путешествие – в один конец. Аппарат просто-напросто сгорит ещё на подлёте к Солнцу.

Но, если представить, что этого не случится, то путешествие на космическом корабле займёт около 7-8 месяцев. При таком огромном расстоянии, это не слишком длительный срок.

Официальное расстояние от поверхности земли до космоса

Страны не пришли к единому мнению, где заканчивается воздушное пространство. Это связано с проблемой установления высотного предела государственного суверенитета.

В своей практике государства придерживаются нормы, согласно которой объекты в свободном полете на орбите с наиболее низкими перигеями находятся в сфере действия границы свободы исследования и использования космического пространства, то есть в открытом космосе.

ФАИ (Международная авиационная федерация) регистрирует полет как космический, начиная от линии Кармана (100 км). В таком интервале от планеты аппарат может совершить полный орбитальный виток вокруг Земли, после чего начинаются его вход в плотные слои атмосферы, торможение и падение.

Международное космическое право базируется на следующих принципах:

  1. В космосе не существует границ государств.
  2. Исследования космического пространства проводятся в целях всего человечества согласно международному праву, включая устав ООН.
  3. В космосе запрещено размещать оружие массового уничтожения.
  4. Искусственные космические объекты находятся под юрисдикцией государства, запустившего их.
  5. Страны учитывают интересы друг друга, организуют консультации.
  6. Космонавты — посланцы человечества.

Линия Кармана — начало космического полета по мнению ФАИ. Credit: NASA, Galileo.

Данные нормы иногда вступают в противоречие с интересами мировых держав, так как вопрос о государственном суверенитете воздушного пространства тесно связан с лимитированием безвоздушных пространств.

Эволюция методик измерения расстояния до Луны

Только с изобретением телескопа астрономы смогли получить более-менее точные значения параметров орбиты Луны и соответствия её размеров с размером Земли.

Пример эволюции астрономической единицы со временем

Более точный метод измерения расстояния до Луны появился в связи с развитием радиолокации. Первая радиолокация Луны была проведены в 1946 году в США и Великобритании. Радиолокация позволяла измерить расстояние до Луны с точностью в несколько километров.

Ещё более точным методом измерения расстояния до Луны стала лазерная локация. Для его реализации в 1960х годах на Луне было установлено несколько уголковых отражателей. Интересно отметить, что первые эксперименты по лазерной локации были проведены ещё до установки уголковых отражателей на поверхности Луны. В 1962-1963 годах в Крымской обсерватории СССР были проведены несколько экспериментов по лазерной локации отдельных лунных кратеров с использованием телескопов диаметром от 0.3 до 2.6 метров. Эти эксперименты смогли определять расстояние до поверхности Луны с точностью в несколько сотен метров. В 1969-1972 годы астронавты программы “Аполлон” доставили на поверхность нашего спутника три уголковых отражателя. Среди них наиболее совершенным был отражатель миссии “Апполон-15”, так как он состоял 300 призм, тогда как два других (миссии “Апполон-11” и “Апполон-14”) только из ста призм каждый.

Карта положения уголковых отражателей

Кроме того в 1970 и 1973 годах СССР доставил на поверхность Луны ещё два французских уголковых отражателя на борту самоходных аппаратов “Луноход-1” и “Луноход-2”, каждый из которых состоял из 14 призм. Использование первого из этих отражателей обладает незаурядной историей. За первые 6 месяцев работы лунохода с отражателем удалось провести около 20 сеансов лазерной локации. Однако затем из-за неудачного положения лунохода вплоть до 2010 года не удавалось использовать отражатель. Лишь снимки нового аппарата LRO помогли уточнить положение лунохода с отражателем, и тем самым возобновить сеансы работы с ним.

В СССР наибольшее количество сеансов лазерной локации было проведено на 2.6-метровом телескопе Крымской обсерватории. Между 1976 и 1983 годами на этом телескопе было проведено 1400 измерений с погрешностью в 25 сантиметров, затем наблюдения были прекращены в связи со свертыванием советской лунной программы.

Всего же с 1970 по 2010 годы в мире было проведено примерно 17 тысяч высокоточных сеансов лазерной локации. Большинство из них было связано с уголковым отражателем “Аполонна-15” (как говорилось выше, он является наиболее совершенным – с рекордным количеством призм):

Из 40 обсерваторий, способных выполнять лазерную локацию Луны лишь несколько могут выполнять высокоточные измерения:

Большинство сверхточных измерений выполнено на 2-метровом телескопе в техасской обсерватории имени Мак Дональда:

В то же время наиболее точные измерения выполняет инструмент APOLLO, который был установлен на 3.5-метровом телескопе обсерватории Апач Пойнт в 2006 году. Точность его измерений достигает одного миллиметра:

Сколько лететь до Марса от Земли

Сейчас Красная планета изучается с различных точек зрения в качестве:

  • возможного источника природных ресурсов и полезных ископаемых;
  • территории для переселения с Земли;
  • направления в туризме.

Для каждого пункта важно время полета человека до Марса. Продолжительность полета зависит от того, в каких точках находится каждая из планет

Наиболее коротким считается путь по прямой линии, когда небесные тела максимально приближены друг к другу: среднее время полета займет 39 суток и 5 часов.

Однако в реальности осуществить такой полет невозможно, т. к.:

  1. Марс и Земля постоянно движутся, перемещаясь по эллиптическим орбитам разного размера.
  2. Гравитационное притяжение Солнца оказывает влияние на небесные тела.

Поэтому ученые спроектировали 3 траектории полета до Красной планеты: параболическая, гомановская (эллиптическая) и гиперболическая.

Возможные траектории полета на Красную планету. Credit: ptich-mol.ru.

Эллиптическая траектория считается простейшей траекторией, полет по которой требует минимальных топливных затрат. Такой маршрут впервые был предложен в 1925 г. Гомановская траектория имеет форму эллиптической орбиты, по которой летательный аппарат может переходить между 2 другими орбитами. Ориентировочное время в пути — 150-260 суток, в зависимости от начальной скорости летательного аппарата.

Гиперболическая траектория предполагает, что космический корабль сначала пролетит мимо Марса, а потом поменяет направление движения под влиянием гравитационного поля Красной планеты. Сложность выполнения такого маршрута заключается в том, что скорость летательного аппарата должна превышать 16,7 км/с.

В современных ракетах применяются химические двигатели, не способные развивать такие скорости. Для этого необходимы ионные двигатели, которые ученые активно разрабатывают. Общее время полета по гиперболической траектории варьируется от 1 до 1,5 месяцев.

Таким образом, выбор траектории полета на Марс зависит от нескольких факторов: тип двигателя космического корабля; необходимое (оптимальное) время полета; удаленность Марса от Земли.

За все время освоения космического пространства к Марсу было отправлено около 50 миссий автоматических зондов. Сейчас разрабатываются программы по пилотируемому полету на Красную планету.

Понятие астрономической единицы

Решением Международного астрономического союза с 2012 г. астрономическая единица привязана к Международной системе единиц (СИ) и равна 149 597 870 700 м. Данный показатель используется для вычислений, не требующих высокой точности. В ином случае рассчитывается величина для нужного момента времени.

Современные технологии космической отрасли позволяют определять величину астрономической единицы с высокой точностью. Наблюдая за изменениями ее значения, в 2004 г. российские ученые Г. Красинский и В. Брумберг обнаружили, что Земля и Солнце расходятся. Постепенное отклонение объектов незначительно и составляет около 15 см ежегодно. Причина явления пока не установлена, но выдвинуто много интересных гипотез.

Масса

Размер Солнца, определяется значением его массы, которое составляет 1,98892 *1030 кг. Если написать это значение, используя нули, их суммарное количество получится равным 25. А это в 333 тысячи раз больше, чем Земля, в 1048 – чем Юпитер, в 3 498 – чем Сатурн. Практические наблюдения показывают, что с течением времени размер Солнца уменьшается. Связано это явление с двумя факторами:

  • реакции, протекающие в ядерной части, способствующие преобразованию водородных атомов в гелий;
  • наличие солнечного ветра, выдувающего протоны и электроны во внешнее космическое пространство.


Физические характеристики Солнца

Земля или Солнце: что вращается?

Много лет назад считалось, что Земля является неподвижной, а вращаются вокруг нее Солнце и все другие местные планеты. Доказать обратное удалось только в XVI в. Многие ошибочно связывают этот научный прорыв с именем Галилео Галилея, ведь это он произнес знаменитые слова «И все-таки она вертится!».

Однако открытие принадлежит Николаю Копернику — в своем трактате «Об обращении небесных сфер», увидевшем свет в 1543 г., он выдвигал теорию о движении планет вокруг Солнца, а не всех небесных тел вокруг Земли.

Эта идея долгое время не была признана в европейских научных кругах и тем более ее не поддержала церковь. Однако это была мини-революция, оказавшая влияние на дальнейшее развитие астрономии.

Вращение Земли вокруг Солнца. Credit: Luckclub.ru

Сначала теория о вращении планет вокруг центра Солнечной системы была окончательно доказана, затем астрономы начали выяснять причины такого явления.

В последние столетия выдвигалось множество гипотез, однако точно ответить сегодня на вопрос, почему Земля крутится вокруг Солнца, не может ни один исследователь.

Хотя несколько версий имеется:

  • инертное вращение;
  • приведение в движение магнитосферой;
  • воздействие на Землю солнечного излучения.

Закон Ньютона утверждает, что все тела, в т. ч. и космические, передвигаются по прямой линии. Это значит, что околосолнечные планеты, включая нашу, давно должны были улететь в открытое космическое пространство, однако до сих пор этого не произошло. Все же Солнце имеет большую массу, вызывающую соответствующую силу притяжения.

Во время своего движения Земля все время пытается отклониться от эллиптической траектории и начать движение по прямой линии, однако солнечная гравитация притягивает планету обратно, поэтому мы удерживаемся на орбите и кружимся вокруг нашего светила.

Измерение окружности Земли в древние времена

О длине этой величины было известно еще в Древней Греции. Необходимые расчеты были сделаны древнегреческим математиком, астрономом, географом Эратосфеном. Ему было известно о том, что в день солнцестояния 21 июня в Сиене, находящейся за полтысячи миль от Александрии, в полдень освещалось дно колодцев, а от предметов не обнаруживалась тень. Выходит, Солнце в этом участке планеты было в зените. В Александрии ничего подобного не происходило.

В полдень летнего солнцестояния ученый измерил тень от городского обелиска (ему была известна его высота). Так было установлено, что Александрию и Сиену отделяет 7 градусов широты.

Астроном делал вычисления дальше. 7° – это примерно одна пятидесятая часть окружности, равняющейся 360°. Умножив расстояние от Сиены до Александрии на 50, у математика получилось число 25000. Стольким милям равнялась окружность Земли.

Измерение длины окружности Земли Эратосфеном

Длина окружности Земли, рассчитанная Эратосфеном, немного меньше фактической. Это объясняется не примитивностью расчетов: этот способ узнать окружность Земли достаточно точный. Во времена жизни Эратосфена никто не знал точной дистанции между этими населенными пунктами

Также ученый не принял во внимание то, что оба города расположены на двух разных меридианах

В средние века упоминания о подобных исследованиях были запрещены церковью. Только в 16 веке кругосветное путешествие Ф. Магеллана позволило убедиться, что планета действительно имеет округлую форму, и что окружность ее действительно равна 40 тыс. км.

Метод параллакс для измерения расстояния до Марса

Важный способ вычисления космических расстояний — применение метода параллакса, который заключается в следующем:

  1. На Земле берется 2 точки (желательно, чтобы они находились как можно дальше друг от друга). Отрезок, который их соединяет, называется базисом.
  2. Звезда, планета или другое небесное тело, расстояние до которого вычисляют, является 3 точкой, образуя вершину абстрактного треугольника.
  3. Далее вычисляется значение угла с вершиной в 3 точке, т. е. противолежащего базису угла, который называется горизонтальным параллаксом.
  4. Затем при помощи тригонометрических формул делаются расчеты, позволяющие установить расстояние до астрономических объектов.

Впервые такой способ был применен в XVII в. Джованни Доменико Кассини.

Определение расстояния до звезд методом горизонтального параллакса. Credit: spacegid.com.

Примерное определение дистанции

Единого научного мнения, на каком расстоянии от Земли начинается космос, не существует. Ученые формируют свои доказательства исходя из различных видов физических параметров.

Есть идея, что космос начинается после исчезновения гравитационного воздействия Земли — на расстоянии 21 млн км.

На высоте 18,9-19,35 км при температуре человеческого тела начинает закипать вода. То есть для организма космос начнется на линии Армстронга. После того как в 1957 году первый искусственный спутник исследовал пространство над Землей, возникло понятие «ближний космос» (от 20 до 100 км).

Американские и канадские ученые, измерив границу влияния ветров атмосферы и начало воздействия космических частиц на высоте 118 км, предложили определять космическое пространство с данного значения.

Гравитационное поле Земли простирается на 21 млн км, после него начинается космос. Credit: pages.uoregon.edu.

Национальное управление по аэронавтике и исследованию космического пространства Правительства США отмечало расстояние 122 км, на котором шаттлы переключались с маневрирования двигателями на аэродинамику. А военно-воздушные силы своим пределом узаконили отметку 80,45 км.

В 1979 году СССР предложил считать границей космоса величину выше 100-110 км.

Скорость света

Любопытно, сколько времени требуется свету, чтобы достигнуть Земли. Луч Солнца путешествует до Земли со скоростью 300.000.000 м/с. Чтобы пройти миллионы километров, ему требуется всего 8 минут. В космических масштабах это очень мало.

Исследователи занимаются изучением объектов, расположенных в удалении от Земли на многие световые годы. Один световой год – это отрезок с колоссальной протяженностью. Свету нужно лететь год, чтобы преодолеть расстояние в 9460 миллиардов километров. В астрономических единицах световой год равен 63241,1.

Еще одна из единиц измерения расстояний между удаленными космическими объектами – это парсек. Он составляет 3,26 световых года. Парсек – это сокращение от сочетания слов «параллакс» и «секунда».

Параллаксные дистанции измеряются именно при помощи парсеков. То есть пока Земле приходится идти по своей орбите вокруг Солнца, при смене ее положения на орбите также слегка меняется положение звезд.


Орбиты планет

Следствие осевого вращения Земли

Наша планета равномерно вращается вокруг воображаемой оси. Такое движение Земли называют осевым вращением. Все объекты на земной поверхности вращаются вместе с Землёй. Вращение происходит с запада на восток, то есть против часовой стрелки, если смотреть на Землю со стороны Северного полюса. Из-за такого вращения планеты восход солнца утром происходит на востоке, а закат вечером — на западе.

Земная ось наклонена под углом 66 1/2°  к плоскости орбиты, по которой планета движется вокруг Солнца. При этом ось строго ориентирована в космическом пространстве: её северный конец постоянно направлен на Полярную звезду. Осевое вращение Земли определяет видимое движение звёзд и Луны по небосклону.

Вращение Земли вокруг оси оказывает большое влияние на нашу планету. Оно определяет смену дня и ночи и возникновение естественной, данной природой единицы измерения времени — суток. Это период полного оборота планеты вокруг своей оси. Длительность суток зависит от скорости вращения планеты. Согласно существующей системе исчисления времени сутки делят на 24 часа, час — на 60 минут, минуту — на 60 секунд.

Из-за осевого вращения Земли все движущиеся по её поверхности тела отклоняются от первоначального направления в Северном полушарии вправо по ходу своего движения, а в Южном — влево. В реках отклоняющая сила прижимает воду к одному из берегов. Поэтому у рек в Северном полушарии обычно более крутой правый берег, а в Южном полушарии — левый. Отклонение воздействует на направление ветров в атмосфере, течений в Мировом океане.

Осевое вращение влияет на форму Земли. Наша планета не идеальный шар, она немного сжата у полюсов. Поэтому расстояние от центра Земли до полюсов (полярный радиус) на 21 километр короче расстояния от центра Земли до экватора (экваториальный радиус). По этой же причине меридианы на 72 километра короче экватора.

Осевое вращение вызывает суточные изменения в поступлении солнечного света и тепла на земную поверхность, объясняет видимое движение звёзд и Луны по небосклону. Оно определяет также различие во времени в разных частях земного шара.

Сложности вычислений расстояния от Земли

Отдаленность Земли от других объектов в космосе измеряется:

  • в астрономических единицах;
  • в световых годах;
  • в парсеках.

Астрономическая единица (а.е.) — это среднее расстояние между 3 планетой Солнечной системы и Солнцем. Это значение равно 149,6 млн км и применяется оно только для измерения расстояний в пределах Солнечной системы.

Для вычисления расстояния между Марсом и Землей определяют, где располагаются оба небесных тела.

Но есть несколько факторов, осложняющих эти вычисления:

  1. Небесные тела движутся по орбитам, имеющим не круглую, а эллиптическую форму.
  2. Скорость Марса меньше скорости Земли.
  3. Солнце не является центром орбит.

Это значит, что в разных точках небесные тела будут удалены друг от друга на различные дистанции, т. е. удаленность Земли от Красной планеты не относится к постоянным величинам.

Особенности гелиоцентрической системы мира

Найти некую центральную точку Вселенной предоставляется возможным только в том случае, если Вселенная ограничена. Таковой она обязана согласно гелиоцентрической системе мира.

Также в данной системе возникло такое понятие как внешние и внутренние планеты. К последним относились Меркурий и Венера, т.к. их орбиты вращения вокруг Солнца всегда должны быть внутри орбиты Земли.

Параллакс — угол, отмеченный символом π

Важнейшей особенностью гелиоцентризма являются годичные параллаксы звёзд. Данный эффект проявляется в виде изменения видимых координат звезды. Он связан со сменой положения наблюдателей (астрономов), возникшей из-за вращения Земли вокруг Солнца.

Земля

Размеры и форма Земли

Первым определил размеры Земли грек Эратосфен в конце III века до н.э. Широты и меридианы были уже известны, и он решил измерить длину земной дуги в 1о.  Это давало длину окружности земного шара, а затем – его диаметр и радиус.

Способ вычисления земного радиуса Эратосфеном

Длину дуги в градусах он посчитал как разность географических широт городов Александрия и Сиена: φB — φA. В Сиенский полдень Солнце находилось в зените, его высота составляла hA=90о. Эратосфен измерил высоту Солнца в Александрии – оно отстояло от зенита на 7,2о.

Способ вычисления земного радиуса Эратосфеном

Поскольку расстояние между городами составляло 5000 стадий или 800 км (1 стадия равнялась 160 м), дальше не составляло проблем найти длину окружности Земли Lз: Lз/5000=360/7,2 = 250 000 стадий = 40 тыс. км, что почти полностью совпадает с современной цифрой (40075,7 км). Для получения радиуса Земли Rз оставалось только воспользоваться формулой:

Lз= 2πRз.

Определение формы Земли

В XVIII веке для сравнительного эксперимента французской академией наук было снаряжено 2 экспедиции – одна проводила измерения в Перу, другая – в северной Финляндии. Выяснилось, что длина 1о меридианной дуги на севере больше, чем в районе экватора. Более того – чем дальше к северу, тем длина дуги становилась больше. Это объяснялось одним – земной шар оказался сплюснут на полюсах. Радиус до Северного полюса был короче экваториального радиуса на 21 км.

Как впервые посчитали массу Земли

Это стало возможным после открытия Ньютоном двух законов – закона всемирного тяготения и закона силы. Из них вытекало, что масса Земли равна:

Мз = (gRз2)/G

Ускорение свободного падения g посчитали, сбросив шар (барометр) с высокой башни. Замеренное время и высота башни дали: g = 9,8 м/с2. Земной радиус Rз ещё до нашей эры измерил грек Эратосфен – 6371 км. Гравитационную постоянную посчитали, измерив силу притяжения двух тел с известной массой. Подставив полученные данные в формулу, получили массу Земли:

Мз = 6*1024 кг.

Эксперимент с нейтрино позволил уточнить земную массу. Испанские учёные в лаборатории на Южном полюсе сумели поймать нейтрино от Солнца в момент, когда оно оказалось у Северного полюса, измерили скорость неуловимой частицы и получили плотность среды, то есть земную плотность и следом: Мз = 5,972*1024 кг.

Массы других планет получали по орбитам планет и их спутников (где они были), и гравитационным силам между ними.

От побережья к побережью

Расстояние между двумя крайними австралийскими городами, Перт и Брисбен, по прямой составляет 3606 км. Такова протяженность Австралии. Таким образом, если поместить Австралию и Луну рядом, растянув последнюю по диаметру, их протяженность будет примерно одинакова.

С другой стороны, такой взгляд является слишком односторонним. Хотя Луна имеет одинаковую протяженность с Австралией, на самом деле она гораздо больше. Площадь Австралии составляет примерно 7,69 миллионов квадратных километров, тогда как площадь Луны равна 37,94 миллионов квадратных километров, что почти в пять раз превышает территорию Австралии.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Дружный центр
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: