Что такое фотосинтез

Тест

1. Что является результатом фотосинтетического процесса:

1) белки,2) жиры,3) углеводы,4) нуклеиновые кислоты.

2. В процессе фотосинтеза впитывается:

1) энергия АТФ,2) энергия солнечного света,3) тепловая энергия,4) энергия окисления органических веществ.

3. Фотосинтез протекает:

1) в ядре,2) в цитоплазме,3) в клетках мезофилла,4) в хлоропластах.

4. Фотосинтетические пигменты располагаются:

1) в ядре,2) в реакционном центре,3) в органах растения,4) в хлоропластах.

5. Молекулы хлорофилла помещаются:

1) в мембранах тилакоидов,2) внутри тилакоидов3) в прокариоте,4) в строме.

6. Стопка тилакоидов образует:

1) строму,2) грану,3) ламеллу,4) альдегидную группу.

7. Клеточное дыхание — это:

1) обеспечение клетки энергией,2) транспорт электронов,3) обеспечение клетки цианобактериями,4) газовыделение.

8. Разложение молекул воды в растении — это:

1) фотолиз,2) гликолиз,3) пигмент,4) реакция.

Правильные ответы на тест: 1—3, 2—2, 3—4, 4—4, 5—1, 6—2, 7—1, 8—1.

Основные типы хемосинтетиков

Среди хемосинтезирующих бактерий выделяется несколько групп в зависимости от вещества, используемого в качестве источника углерода

Сероредуцирующие, или серобактерии

Абсолютно бесцветные микроорганизмы, которые получают энергию посредством окисления сероводорода (H2S) и образования свободной серы (S).

2H2S + O2 = 2H2O + S2 + 272 кДж

В случае недостаточного количества сероводорода они могут продолжить окислительный процесс окислением серы и получением серной кислоты (H2SO4):

S2 + 3O2 + 2H2O = 2H2SO4 + 483 кДж

Живут серобактерии в водоемах, насыщенных сероводородом. В Черном море количество таких бактерий просто огромно.

Образованная серная кислота медленно разрушает сооружения из металла и камня, горные породы, способствует выщелачиванию руды и месторождений серы.

Нитрифицирующие, или нитробактерии

Это одноклеточные бактерии, получающие энергию для протекания такого процесса, как хемосинтез, из реакции окисления аммиака (NH3) и азотистой кислоты (HNO2) при гнилостном разложении веществ органической природы.

Аммонийокисляющие микроорганизмы занимаются окислением аммиака:

2NH4 + 3O2 = 2HNO2 + 663 кДж

Нитритокисляющие бактерии продолжают окислительный процесс, окисляя нитритную кислоту до нитратной:

2HNO2 + O2 = 2HNO3 + 192 кДж

Средой обитания данного вида бактериальных микроорганизмов являются почвы и водоемы, где они комфортно себя чувствуют при температуре 25-30°С, а также уровне pH=7,5-8,0. Размножаются путем деления (кроме Nitrobacter).

Аммонийокисляющие бактерии во всем своем количестве являются облигатными автотрофами, то есть могут окислить метан (CH4) и диоксид углерода.

Нитрифицирующие микроорганизмы принадлежат к хемолитотрофным микробам, являющимся наиболее распространенными в естественных условиях. Из них самое широкое распространение получили аммонийокисляющие, благодаря возможности использовать еще один энергетический источник окисления метана.

Именно благодаря жизнедеятельности нитрифицирующих бактерий образовалось столько ископаемой селитры в недрах земли. Человечество научилось использовать нитрифицирующих бактерий в процессах обогащения руд для получения чистого марганца и при добыче угля. Также их используют для преобразования сточных вод.

Железобактерии

Тип бактерий, которые способны окислять соединения железа (Fe), а также марганца (Mn). Средой обитания данного вида являются морские, пресные водоемы. Своей жизнедеятельностью они способствуют отложениям на дне водоемов руд, содержащих марганец и железо.

4FeCO3 + O2 + 6H2O = 4Fe(OH)3 + 4CO2 + 324 кДж

Водородные бактерии, или водородобактерии

Хемосинтез водородных бактерий протекает за счет окисления молекул водорода (H2), образующегося за счет анаэробного (без применения кислорода) разложения на компоненты органического материала:

2H2 + O2 = 2H2O + 235 кДж

Водородных микроорганизмов применяют для продукции пищевых, а также кормовых белков, осуществления атмосферных регенеративных процессов в системе жизнеобеспечения замкнутого типа (в системе «Оазис-2» и других).

Основное отличие — хемосинтез против фотосинтеза

Хемосинтез и фотосинтез являются двумя основными производственными механизмами, когда организмы производят свою собственную пищу. Оба процесса участвуют в производстве простых сахаров, таких как глюкоза, начиная с углекислого газа и воды. главное отличие между хемосинтезом и фотосинтезом является то, что хемосинтез — это процесс, который синтезирует органические соединения в клетке за счет энергии, получаемой в результате химических реакций в то время как Фотосинтез — это процесс, который синтезирует органические соединения с помощью энергии, получаемой от солнечного света.

Эта статья смотрит на,

1. Что такое хемосинтез        — определение, характеристики, процесс2. Что такое фотосинтез        — определение, характеристики, процесс 3. В чем разница между хемосинтезом и фотосинтезом

Особенности хемосинтезирующих бактерий

Слайд 1

Выполнили: Гуляев Иван; Дружинин Михаил Руководитель: Агапова У.В., учитель биологии

Слайд 2

Хемосинтез — тип питания многих прокариотов, основанный на усвоение углекислого газа за счет процессов окисления неорганических соединений.

К хемосинтезу способны только хемосинтезирующие бактерии: нитрифицирующие , водородные , железобактерии , серобактерии и др.

На земной поверхности молекулярный водород, да еще вместе с кислородом, встречается редко. Именно поэтому распространение хемосинтезирующих бактерий в природе весьма ограничено.

Слайд 3

Нитрифицирующие бактерии , встречающиеся в жирной почве, навозе, окисляют аммоний ( комплексный неорганический катион) до нитрита, а нитрит – до нитрата. Они завершают распад органических азотистых веществ, возвращая азот в соединения, усваиваемые растениями. В то же время удаляется аммиак – неизбежный продукт разложения белков .

Слайд 4

Тионовые бактерии — серобактерии, получающие энергию за счёт окисления серы и её восстановленных неорганических соединений (сероводорода, тиосульфата и др.).

Это мелкие, палочковидные, в большинстве подвижные грамотрицательные бактерии. Строгие аэробы, за исключением нескольких видов, которые могут развиваться и в анаэробных условиях.

Тионовые бактерии широко распространены в водоёмах, почве, рудных месторождениях. Участвуют в круговороте серы и многих других элементов.

С их жизнедеятельностью связано бактериальное выщелачивание металлов из руд, концентратов и горных пород, аэробная коррозия металлов, разрушение бетонных сооружений и т. д.

Слайд 5

Водородные бактерии , бактерии, получающие для роста энергию в результате окисления молекулярного водорода постоянно образующимся при анаэробном разложении различных органических остатков микроорганизмами почвы.

Присутствуют в разных почвах и во многих водоёмах, способны расти за счёт окисления водорода в аэробных условиях, и используют образующуюся при этом энергию для усвоения углерода.

К ним относятся представители более 30 систематических групп.

Бактерии-гетеротрофы и автотрофы, а также сапрофиты, хемосинтетики и хемотрофы

Бактерии, которые еще называются гетеротрофы, – это микроорганизмы, использующие в качестве источника энергии химические соединения, содержащие углерод. Этим они отличаются от автотрофных организмов, ведь гетеротрофы не могут существовать без внешнего источника питания.

Гетеротрофные организмы: что это

Гетеротрофные микроорганизмы не могут синтезировать органические соединения у себя внутри путем фотосинтеза или хемосинтеза. В первом случае органические соединения синтезируются при наличии солнечного света. Хемосинтетики же образуют питательные соединения путем переработки некоторых органических веществ.

Все бактерии, будь то гетеротрофы или автотрофы, непременно питаются определенными источниками. Граница между такими формами жизни условная, так как наука знает примеры организмов, имеющих переходную форму питания. Их называют миксотрофными.

Как питаются гетеро-организмы

Гетеротрофы и автотрофы тесно связаны между собой. Ведь выживание этих микроорганизмов напрямую связано с наличием автотрофных существ. В эту категорию входят и хемотрофы. Выходит, эти прожорливые микросущества потребляют то, что произвели для них автотрофы.

Все гетеротрофы делятся на такие виды.

  1. Плесень и дрожжи, питающиеся готовой пищей. Это наиболее четко отличает такие бактерии – автотрофы это или гетеротрофы.
  2. Бактерии, которые называются гетеротрофы сапрофиты, питаются мертвой пищей.
  3. Гетеротрофы, питание которых происходит за счет живых существ. Они являются болезнетворными.

Некоторые виды бактерий-гетеротрофов имеют похожее питание, что и хемосинтетики. Так, они окисляют органические соединения без усвоения кислоты. Такое питание является промежуточным. Однако особенности таких переходных типов организмов, питающихся так же, как и хемотрофы, находят свое применение в различных видах хозяйственной деятельности человека.

Роль гетеротрофных микробов в природе

Гетеротрофы перерабатывают готовые органические соединения, добывая из них углерод и окисляя его. Благодаря этим микросуществам, до 90 процентов углекислого газа попадает в атмосферу именно благодаря гетеротрофам.

Гетеротрофы и хемотрофы способствуют образованию плодородной почвы. В одном грамме почвы содержится такое колоссальное количество микробов, что позволяет говорить о ней как о живой системе.

Отметим также, что гетеротрофы сапрофиты способствуют переработке органического материала. Если бы не эти бактерии, то планета покрылась бы толстым слоем опавшей листвы, веток, а также погибших животных. Проще говоря, сапрофиты «поедают» органические отходы.

Благодаря деятельности, которую выполняют гетеротрофы или автотрофы, происходит самоочищение водоемов. Что такое самоочищение, знает каждый школьник: без этого процесса вся вода на планете очень скоро превратилась бы в полностью непригодную для употребления и жизни.

Без сапрофитов невозможна переработка органических веществ. Сапрофиты способствуют поддержанию постоянного количества биомассы.

Аэробные и анаэробные гетеротрофные организмы

Анаэробы живут в местах, где нет кислорода. Для них этот элемент, как ни странно, является токсичным. Поэтому они получают энергию для жизни путем так называемого фосфорилирования. Этот процесс происходит путем распада аминокислот и белков.

Путем брожения расщепляется глюкоза и другие глюкозообразные вещества. Известные нам процессы – молочнокислое, спиртовое, а также метановое брожение – являются анаэробными.

Аэробные формы жизни гетеротрофного типа живут только за счет кислорода. Все эти бактерии имеют достаточно разнообразную дыхательную цепь. Она помогает им приспосабливаться к разным концентрациям кислорода в воздухе.

Гетеротрофы получают энергию путем окисления АТФ (аденозинтрифосфата – важнейшего белкового соединения), для чего им и нужен кислород. Однако большое количество кислорода не означает, что в такой атмосфере смогут существовать микроорганизмы.

Экспериментально доказано, что если количество свободного О2 в атмосфере достигнет половины общего объема, то развитие практически всех известных бактерий прекратится.

А в атмосфере чистого 100-процентного кислорода не может развиваться ни один простейший организм, даже прокариот.

Окислительная фаза

Во время этой первой фазы и в зависимости от рассматриваемого типа организма окисляются различные типы восстановленных неорганических соединений, такие как аммиак, сера и ее производные, железо, некоторые производные азота, водорода и т. Д.

На этом этапе окисление этих соединений высвобождает энергию, которая используется для фосфорилирования АДФ, образуя АТФ, одну из основных энергетических валют живых существ, и, кроме того, восстанавливающая сила генерируется в форме молекул НАДН.

Особенность хемосинтетического процесса связана с тем, какая часть генерируемого АТФ используется для продвижения обратного транспорта электронной цепи, чтобы получить большее количество восстановителей в форме НАДН.

Таким образом, этот этап состоит из образования АТФ в результате окисления соответствующих доноров электронов, биологически полезная энергия которых используется в фазе биосинтеза.

Открытие [ править ]

У гигантских трубчатых червей ( Riftia pachyptila ) вместо кишечника есть орган, содержащий хемосинтезирующие бактерии.

В 1890 году Сергей Виноградский предложил новый тип жизненного процесса под названием «аноргоксидант». Его открытие показало, что некоторые микробы могут жить исключительно на неорганической материи, и появилось во время его физиологических исследований серных, железных и азотных бактерий в 1880-х годах в Страсбурге и Цюрихе .

В 1897 году Вильгельм Пфеффер ввел термин «хемосинтез» для производства энергии путем окисления неорганических веществ в сочетании с автотрофной ассимиляцией углекислого газа — то, что сегодня назвали бы хемолитоавтотрофией. Позже этот термин будет расширен, чтобы включить также хемоорганоавтотрофов, которые представляют собой организмы, которые используют органические энергетические субстраты для ассимиляции диоксида углерода. Таким образом, хемосинтез можно рассматривать как синоним хемоавтотрофии .

Термин « хемотрофия », менее ограничительный, будет введен в 1940-х годах Андре Львоффом для получения энергии путем окисления доноров электронов, органических или нет, связанных с ауто- или гетеротрофией.

Гидротермальные источники править

Предположение Виноградского подтвердилось почти 90 лет спустя, когда в 1970-х годах было предсказано существование гидротермальных океанических жерл. Горячие источники и странные существа были обнаружены Элвином , первым в мире глубоководным аппаратом для погружения в воду, в 1977 году в Галапагосском разломе . Примерно в то же время тогдашняя аспирантка Коллин Кавано предложила хемосинтетические бактерии, которые окисляют сульфиды или элементарную серу, в качестве механизма, с помощью которого трубчатые черви могут выжить вблизи гидротермальных источников. Позже Кавано удалось подтвердить, что это действительно был метод, с помощью которого черви могли процветать, и ему обычно приписывают открытие хемосинтеза.

В телесериале 2004 года, который вел Билл Най, хемосинтез был назван одним из 100 величайших научных открытий всех времен.

Океаническая кора править

В 2013 году исследователи сообщили об открытии бактерий, обитающих в породах океанической коры под толстыми слоями отложений и помимо гидротермальных жерл, образующихся по краям тектонических плит . По предварительным данным, эти бактерии питаются водородом, образующимся в результате химического восстановления оливина морской водой, циркулирующей в небольших жилах, пронизывающих базальт , составляющий океаническую кору. Бактерии синтезируют метан, соединяя водород и углекислый газ.

Основные типы хемосинтетиков

Среди хемосинтезирующих бактерий выделяется несколько групп в зависимости от вещества, используемого в качестве источника углерода

Сероредуцирующие, или серобактерии

Абсолютно бесцветные микроорганизмы, которые получают энергию посредством окисления сероводорода (H2S) и образования свободной серы (S).

2H2S + O2 = 2H2O + S2 + 272 кДж

В случае недостаточного количества сероводорода они могут продолжить окислительный процесс окислением серы и получением серной кислоты (H2SO4):

S2 + 3O2 + 2H2O = 2H2SO4 + 483 кДж

Живут серобактерии в водоемах, насыщенных сероводородом. В Черном море количество таких бактерий просто огромно.

Образованная серная кислота медленно разрушает сооружения из металла и камня, горные породы, способствует выщелачиванию руды и месторождений серы.

Нитрифицирующие, или нитробактерии

Это одноклеточные бактерии, получающие энергию для протекания такого процесса, как хемосинтез, из реакции окисления аммиака (NH3) и азотистой кислоты (HNO2) при гнилостном разложении веществ органической природы.

Аммонийокисляющие микроорганизмы занимаются окислением аммиака:

2NH4 + 3O2 = 2HNO2 + 663 кДж

Нитритокисляющие бактерии продолжают окислительный процесс, окисляя нитритную кислоту до нитратной:

2HNO2 + O2 = 2HNO3 + 192 кДж

Средой обитания данного вида бактериальных микроорганизмов являются почвы и водоемы, где они комфортно себя чувствуют при температуре 25-30°С, а также уровне pH=7,5-8,0. Размножаются путем деления (кроме Nitrobacter).

Аммонийокисляющие бактерии во всем своем количестве являются облигатными автотрофами, то есть могут окислить метан (CH4) и диоксид углерода.

Нитрифицирующие микроорганизмы принадлежат к хемолитотрофным микробам, являющимся наиболее распространенными в естественных условиях. Из них самое широкое распространение получили аммонийокисляющие, благодаря возможности использовать еще один энергетический источник окисления метана.

Именно благодаря жизнедеятельности нитрифицирующих бактерий образовалось столько ископаемой селитры в недрах земли. Человечество научилось использовать нитрифицирующих бактерий в процессах обогащения руд для получения чистого марганца и при добыче угля. Также их используют для преобразования сточных вод.

Железобактерии

Тип бактерий, которые способны окислять соединения железа (Fe), а также марганца (Mn). Средой обитания данного вида являются морские, пресные водоемы. Своей жизнедеятельностью они способствуют отложениям на дне водоемов руд, содержащих марганец и железо.

4FeCO3 + O2 + 6H2O = 4Fe(OH)3 + 4CO2 + 324 кДж

Водородные бактерии, или водородобактерии

Хемосинтез водородных бактерий протекает за счет окисления молекул водорода (H2), образующегося за счет анаэробного (без применения кислорода) разложения на компоненты органического материала:

2H2 + O2 = 2H2O + 235 кДж

Водородных микроорганизмов применяют для продукции пищевых, а также кормовых белков, осуществления атмосферных регенеративных процессов в системе жизнеобеспечения замкнутого типа (в системе «Оазис-2» и других).

Природа и хемосинтез

Роль хемосинтеза в природе сложно переоценить

Процесс окисления неорганических соединений в природе является важной составляющей общего круговорота веществ в биосфере. Относительная независимость хемотрофов от энергии солнечного света делает их единственными обитателями глубоководных впадин и рифтовых зон океана

Аммиак и сероводород, которые перерабатываются данными прокариотами, являются ядовитыми веществами. В этом случае значение хемосинтеза заключается в нейтрализации данных соединений. В науке известен такой термин, как «подземная биосфера». Ее формируют исключительно организмы, которым для жизни не нужны ни свет, ни кислород. Этим уникальным свойством обладают анаэробные бактерии.

Итак, в статье мы разобрались, что такое хемосинтез. Суть этого процесса заключается в окислении неорганических соединений. Хемосинтезирующими организмами являются некоторые виды прокариот: серо-, железобактерии и азотфиксирующие.

голоса

Рейтинг статьи

Бактерии, способные окислять серу и соединения серы

Это бактерии, способные окислять неорганические соединения серы и откладывать серу внутри клетки в определенных отсеках. В эту группу классифицируются некоторые нитчатые и не нитчатые бактерии разных родов факультативных и облигатных бактерий.

Эти организмы способны использовать соединения серы, которые очень токсичны для большинства организмов.

Соединение, наиболее часто используемое бактериями этого типа, — это газ H2S (серная кислота). Однако они также могут использовать элементарную серу, тиосульфаты, политионаты, сульфиды металлов и другие молекулы в качестве доноров электронов.

Некоторым из этих бактерий для роста требуется кислый pH, поэтому они известны как ацидофильные бактерии, в то время как другие могут делать это при нейтральном pH, близком к «нормальному».

Многие из этих бактерий могут образовывать «слои» или биопленки в различных типах окружающей среды, но особенно в сточных водах горнодобывающей промышленности, серных горячих источниках и океанских отложениях.

Их обычно называют бесцветными бактериями, поскольку они отличаются от других зеленых и пурпурных бактерий, которые являются фотоавтотрофными, тем, что у них нет никаких пигментов, а также то, что они не нуждаются в солнечном свете.

Уравнение хемосинтеза

Есть много разных способов достижения хемосинтеза. Уравнение для хемосинтеза будет выглядеть по-разному в зависимости от того, какой химический источник энергии используется. Однако все уравнения для хемосинтеза обычно включают в себя:

Реактивы:

  • Углеродсодержащее неорганическое соединение, такое как диоксид углерода или метан. Это будет источником углерода в органической молекуле в конце процесса.
  • Химический источник энергии, такой как газообразный водород, сероводород или двухвалентное железо.

Товары:

  • Органическое соединение, такое как сахар или аминокислота.
  • Преобразованная версия источника энергии, такая как элементарная сера или трехвалентное железо.

Обычно используемый пример уравнения для хемосинтеза показывает превращение диоксида углерода в сахар с помощью сероводорода:

12H2S + 6CO2 → C6H12O6 (молекула сахара) + 6H2O + 12S

Это уравнение иногда сводится к простейшему соотношению ингредиентов. Это показывает относительные пропорции каждого ингредиента, необходимого для реакции, хотя он не улавливает полное количество сероводорода и диоксида углерода, необходимое для создания одной молекулы сахара.

Сокращенная версия выглядит так:

2H2S + CO2 → CH2O (молекула сахара) + H2O + 2S

Распространение и экологические функции

Гигантские многощетинковые черви (Riftia pachyptila) имеют орган, содержащий хемосинтетических бактерий вместо пищеварительной системы.

Хемосинтезирующие организмы (например, серобактерии) могут жить в океанах на огромной глубине, в тех местах, где из разломов земной коры в воду выходит сероводород. Конечно же, кванты света не могут проникнуть в воду на глубину около 3—4 километров (на такой глубине находится большинство рифтовых зон океана). Таким образом, хемосинтетики — единственные организмы на Земле, не зависящие от энергии солнечного света и являющиеся продуцентами. Хемосинтетические организмы могут потребляться другими организмами в океане или образовывать симбиотические ассоциации с гетеротрофами. Гигантские многощетинковые черви используют бактерий в их трофосомах (англ.)русск. для связывания диоксида углерода (используя сероводород как источник энергии) продуцирования сахаров и аминокислот. В некоторых реакциях получается сера

12H2S + 6CO2 → C6H12O6 (=углеводы) + 6H2O + 12S:

Вместо высвобождения кислорода при фиксации углекислого газа во время фотосинтеза, из сероводорода в процессе хемосинтеза получаются водорастворимые глобулы серы. В бактериях способных к хемоавторофии в форме хемосинтеза, таких как пурпурные серные бактерии (англ.)русск., пурпурные глобулы серы окрашивают цитоплазму в соответствующий цвет.
Большие популяции животных могут поддерживаться за счет хемосинтезирующих бактерий и архей в белых и черных курильщиках, метановых клатратах, холодных просачиваниях (англ.)русск., трупах китов (англ.)русск., изолированных подземных водных пещерах.

С другой стороны, аммиак, который используется нитрифицирующими бактериями, выделяется в почву при гниении остатков растений или животных. В этом случае жизнедеятельность хемосинтетиков косвенно зависит от солнечного света, так как аммиак образуется при распаде органических соединений, полученных за счёт энергии Солнца.

Роль хемосинтетиков для всех живых существ очень велика, так как они являются непременным звеном природного круговорота важнейших элементов: серы, азота, железа и др. Хемосинтетики важны также в качестве природных потребителей таких ядовитых веществ, как аммиак и сероводород. Огромное значение имеют нитрифицирующие бактерии, которые обогащают почву нитратами и нитритами, — форма азота, преимущественно усваиваемая растениями. Некоторые хемосинтетики (в частности, серобактерии) используются для очистки сточных вод.

По современным оценкам, биомасса «подземной биосферы», которая находится, в частности, под морским дном и включает хемосинтезирующих анаэробных метанокисляющих архебактерий, может превышать биомассу остальной биосферы.

Была выдвинута гипотеза о том, что хемосинтез может поддерживать жизнь под поверхностью Марса, спутника Юпитера — Европы и других планет . Хемосинтез также может быть первым типом метаболизма, который возник на Земле, что привело позже к возникновению клеточного дыхания и фотосинтеза.

Реакции хемосинтеза

Теперь давайте более детально разберем существующие реакции хемосинтеза, все они отличаются в зависимости от бактерий-хемосинтетиков.

Железобактерии

К ним относятся нитчатые и железоокисляющие лептотриксы, сферотиллюсы, галлионеллы, металлогениумы. Обитают они в пресных и морских водоемах. Благодаря реакции хемосинтеза образуют отложения железных руд путем окисления двухвалентного железа в трехвалентное.

4FeCO3 + O2 + 6H2O → Fe(OH)3 + 4CO2 + E (энергия)

Помимо энергии в этой реакции образуется углекислый газ. Также помимо бактерий окисляющих железо, есть бактерии окисляющие марганец.

Серобактерии

Иное их название – тиобактерии, представляют собой весьма большую группу микроорганизмов. Как это следует из их названия, эти бактерии получают энергию путем окисления соединений с восстановленной серой.

2S + 3O2 + 2H2O → 2H2SO4 + E

Полученная в результате реакции сера может, как накапливаться в самих бактериях, так и выделятся в окружающую среду в виде хлопьев.

Нитрифицирующие бактерии

Эти бактерии, обитающие в земле и воде, свою энергию получают за счет аммиака и азотистой кислоты, именно они играют очень важную роль в кругообороте азота.

2NH3 + 3O2 → HNO2 + 2H2O + E

Азотистая кислота, полученная при такой реакции, образует в земле соли и нитраты, способствующие ее плодородию.

Хемосинтез

Что такое хемосинтез как биохимический процесс

Известно деление всех живых организмов, населяющих планету, по способу получения ими энергии на 2 типа: автотрофы и гетеротрофы.

Автотрофы — это организмы, которые могут синтезировать органические соединения из неорганических при помощи различных источников энергии. Почти все автотрофные организмы — это фотосинтетики. К ним принадлежит группа организмов, которые используют для обеспечения процессов биосинтеза энергию солнечного света.

Еще одна группа живых организмов — хемотрофы или хемосинтетики: для обеспечения реакций синтеза они используют энергию, освобожденную во время окисления органических соединений.

Что такое хемосинтез?

Определение 1

Хемосинтез — это отдельный тип питания, в ходе которого происходит синтез органических соединений из неорганических при помощи энергии химических реакций.

Организмы с хемосинтезом

Какие организмы отличаются непривычным для нас типом питания? Стоит отметить, что процесс хемосинтеза в живых организмах изучается учеными достаточно долго. Хемосинтез был открыт российским микробиологом С. Н. Виноградским — произошло это в 1887 году.

Замечание 1

Хемосинтетики — это также отдельные группы бактерий, включая нитрифицирующие, железобактерии, бесцветные серобактерии и др.

Нужна помощь преподавателя?
Опиши задание — и наши эксперты тебе помогут!

Описать задание

В процессе биохимических реакций нитрифицирующие бактерии осуществляют последовательное окисление аммиака до нитритов (позже — до нитратов). Серобактерии, в свою очередь, окисляют сероводород и прочие соединения серы до серной кислоты. Железобактерии получают энергию в результате окисления соединений двухвалентного железа до трехвалентного.

В процессах превращения химических элементов в биохимическом круговороте веществ хемосинтетикам принадлежит ключевая роль. Почти все процессы превращения химических элементов в биосфере осуществляется только при участии живых организмов.

Механизм хемосинтеза

Остановимся на процессе хемосинтеза подробнее. Бактерии, у которых хлорофилл отсутствует, также получили возможность питаться автотрофным типом питания. При этом, необходимую для реакций синтеза энергию они получают по-другому, чем растительные клетки. Еще раз напомним, что открытие этого типа обмена принадлежит российскому ученому С. Н. Виноградскому (1887).

Для синтеза бактериями используется энергия химических реакций. У них есть специальный ферментный аппарат, с помощью которого они превращают энергию химических реакций в химическую энергию соединений — именно они и синтезируются.

Среди хемосинтетиков особенно стоит выделить азотфиксирующие и нитрифицирующие бактерии. Они находятся в почве и окисляют аммиак, который появляется в результате гниения органических остатков до азотной кислоты.

Замечание 2

Эта кислота вступает в реакцию с минеральными соединениями почвы и трансформируется в соли азотной кислоты. Это двухфазный процесс.

Первая фаза — окисление аммиака до азотистой кислоты.

2NH₃+3O₂→2HNO₂+2H₂O+158 ккал.

После этого азотистая кислота превращается в азотную.

2HNO₂+O2→2HNO₃+38 ккал.

Если говорить о серобактериях, то у них осуществляется окисление сероводорода.

2H₂S+O2→2HNO₂+2S.

В некоторых случаях (при недостатке сероводорода) происходит окисление образованной серы до серной кислоты.

2S+3O2+2H₂O→2H₂SO₄+115 ккал.

Железобактерии участвуют в преобразовании закиси железа в окись железа.

4FeCO₃+O₂+6H₂O→4Fe(OH)₃+4CO₂+81 ккал.

Как видно из приведенных выше уравнений химических реакций, хемосинтетики — типичные автотрофы. Они способны самостоятельно синтезировать нужные органические вещества из неорганических соединений при помощи энергии, которая освобождается в ходе окислительных процессов.

Всё ещё сложно?
Наши эксперты помогут разобраться

Все услуги

Решение задач

от 1 дня / от 150 р.

Курсовая работа

от 5 дней / от 1800 р.

Реферат

от 1 дня / от 700 р.

Отличие от фотосинтеза

И хемосинтез, и фотосинтез являются способами автотрофного питания. Их сходство заключается в образовании энергии, накоплении ее в виде молекул АТФ и последующем использовании для синтеза органических соединений.

Но эти два процесса имеют и свои различия. Хемосинтез характерен только для небольшой группы архей и бактерий. Если при фотосинтезе источником энергии выступают кванты света, то при хемосинтезе – энергия, выделяющаяся в ходе различных окислительно-восстановительных реакций. Признаком хемотрофиков является отсутствие хлорофилла, который обязательно присутствует у фототропиков.

При осуществлении синтеза органики фотосинтетики используют в качестве источника углерода исключительно углекислый газ. В отличии от них хемосинтетики способны усваивать углерод и из других соединений: уксусной кислоты, карбонатов, метанола, муравьиной кислоты, угарного газа.

Экосистемы и кислотность воды

Наблюдения фаз хемосинтеза начались в 1977 году возле Галапагосских Островов, во время исследования вулканических явлений в зоне распространения океанических плит. Учёный Джек Корлисс на глубине нескольких тысяч метров в условиях вечного мороза и температуры 2 °C увидел ранее неизвестных моллюсков, улиток и множество видов хемотрофов.

Оказалось, что сероводород, переполняющий гидротермальные воды, является источником серы для медленно живущих хемосинетических бактерий. Затем было обнаружено сходство и ряд организмов, обитающих вокруг гидротермальных источников, что содержат в своих тканях симбиотические бактерии. В 1984 году описаны группы животных, живущих вокруг источников. Температура такой воды близка к океанской, а хемосинтетические полосы представлены другими видами животных, хотя и связаны с обитателями гидротермальных источников.

В последующие годы были исследованы скелеты китообразных, найденные по обе стороны северной части Тихого океана, у берегов Новой Зеландии и на дне Атлантического океана. Оказалось, что они были покрыты многочисленными моллюсками, а кости пахли сероводородом. Пример хемосинтеза — деревянные борта кораблей массово производят экскременты, содержащие соединения серы, тем самым создавая субстрат для функционирования хемосимбиотических организмов.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Дружный центр
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: