Что такое астрономия

За пределами видимого

Человеческий глаз видит далеко не все – например, мы не можем увидеть те излучения, которые, наряду со световыми лучами, испускают звезды и другие космические тела: рентгеновские и гамма-лучи, микро- и радиоволны.

Вместе с лучами видимого света они образуют так называемый электромагнитный спектр. Изучая невидимые части спектра с помощью специальных приборов, астрономы сделали множество открытий, в частности, обнаружили над нашей галактикой огромное облако античастиц, а также гигантские черные дыры, пожирающие все вокруг себя.

Недавно установлено, что внезапные выбросы гамма-лучей, причину которых долгое время не могли понять ученые, свидетельствуют о драматических событиях в далеких галактиках.

Изучая ультрафиолетовое излучение небесных тел, астрономы узнают о процессах, происходящих в недрах звезд.

Исследования, проводимые со спутников, выявляющих инфракрасное излучение, помогают ученым понять, что находится в центре Млечного Пути и других галактик.

Чтобы получить подробную картину других галактик, астрономы соединяют радиотелескопы, располагающиеся на противоположных концах Земли.

Ссылки

  1. Калифорния, США. (2002). Калифорнийский университет. Получено из Введение в телескопы: earthguide.ucsd.edu.
  2. Daily, С. (2016). Science Daily. Получено из Astronomy: sciencedaily.com
  3. Нафф, К. Ф. (2006). Астрономия. Гринхейвен Пресс.
  4. Физика, С. о. (2015). Школа физики. Получено с сайта About the Disciplines: Physics.gmu.edu.
  5. Редд, Н. Т. (6 июня 2012 г.). com. Получено из Что такое астрономия? Определение и история: space.com.
  6. Редд, Н. Т. (7 июня 2012 г.). com. Получено из того, что такое космология? Определение и история: space.com.
  7. Захария, Н. (2010). Scholarpedia. Получено из Astrometry: scholarpedia.org.

Современная космонавтика и ее достижения

Огромный прорыв сделала современная космонавтика в своем развитии. Сегодня о космосе говорится как о реальном, а не как о чем-то сказочно далеком. Запуск современного космического корабля, полеты в космическое пространство стали хоть и дорогостоящими, но обычными явлениями в жизни российского государства.

Не вызывает ни у кого удивления космический туризм, когда за определенную плату можно полетать на космическом корабле. На высоком уровне проходят космические исследования. Современные ученые работают над созданием солнечных электростанций, разрабатывают технологи влияния на климат Земли.

С 2016 года начал свою работу космодром «Восточный» в Амурской области. Это позволило России совершать запуски космических кораблей со своей территории и не зависеть от других стран.

В недалеком будущем в планах запуск пилотируемых кораблей на поверхность Луны, беспилотных космических аппаратов для исследований космического пространства, реализация программы «Морской старт».

Приоритетной задачей для России стало дальнейшее развитие отечественной космонавтики, изучение возможностей современной космической отрасли и выведение ее на передовые мировые рубежи.

Эра телескопов

Изучение космоса началось еще с самых древних времен, когда человек только учился считать по звездам, выделяя созвездия. И только всего четыреста лет назад, после изобретения телескопа, астрономия начала стремительно развиваться принося в науку все новые открытия. Уже первые телескопы сразу резко повысили разрешающую и проницающую способность человеческого глаза. Постепенно были созданы приемники невидимых излучений и в настоящее время Вселенную мы воспринимаем во всех диапазонах электромагнитного спектра – от гамма-излучения до сверхдлинных радиоволн.

XVII век стал переходным веком для астрономии, тогда начали применять научный метод в исследовании космоса, благодаря которому был открыт Млечный путь, другие звездные скопления и туманности. А с созданием спектроскопа, который способен разложить через призму свет, излучаемый небесным объектом, ученые научились измерять данные небесных тел, такие, как температура, химический состав, масса и другие измерения.

Более того, созданы приемники корпускулярных излучений, улавливающие мельчайшие частицы – корпускулы (в основном ядра атомов и электроны), приходящие к нам от небесных тел. Совокупность всех приемников космических излучений способны фиксировать объекты, от которых до нас лучи света доходят за многие миллиарды лет.

ХХ век вообще необычайно раздвинул границы наблюдательной астрономии. К чрезвычайно усовершенствованным оптическим телескопам добавились новые, ранее совершенно невиданные -– радиотелескопы, а затем и рентгеновские (которые применимы только в безвоздушном пространстве и в открытом космосе). Также с помощью спутников используются гамма-телескопы, позволяющие зафиксировать уникальную информацию о далеких объектах и экстремальных состояниях материи во Вселенной.

Для регистрации ультрафиолетового и инфракрасного излучения используются телескопы с объективами из мышьяковистого трехсернистого стекла. С помощью этой аппаратуры удалось открыть много ранее не известных объектов, постичь важные и удивительные закономерности Вселенной.

Клавдий Птолемей (ОК. 90 -168)

Древнегреческий ученый Клавдий Птолемей внес значительный вклад в развитие астрономии. Известность и славу ему принесли научные труды. Теорию Клавдия Птолемея о строении мира, изложенную в трактате «Большое сочинение», ученые средних веков признавали за истину. В одной из своих работ под названием «Альмагест» Птолемей дал обоснование геоцентрической модели мира. Земля, по мнению астронома, — центр Вселенной, а небесные светила (звезды, Луна, Солнце) движутся вокруг нее. Они равномерно перемещаются, делая движения по эпициклам. То есть планета описывает круг вокруг точки, которая движется. А если точка движется по кругу около Земли – это деферент.

Метод, разработанный ученым, давал возможность рассчитать, где находится любая планета в определенный момент времени. Расстояние от Земли до Солнца и Луны он рассчитал с неимоверной точностью и создал каталог звездного неба, на котором расположены 48 созвездий.

Клавдий — автор книги «Фазы неподвижных звезд». В ней ученый подал описание способов, как составить прогноз погоды и указал, как располагаются небесные тела.

Вселенная привлекала Клавдия Птолемея на протяжении всей его жизни, он очень любил наблюдать за звездами, для этого изобрел «астролябон», в котором скомбинировал армиллярные сферы. А придуманный ним «трикветрум» стал прототипом стенного круга.

Он автор книги «Подручные таблицы», которая напоминает астрономический справочник. В ней есть астрономические таблицы, позволяющие точно рассчитать положение планет и любое астрономическое явление в конкретное время.

Но не только астрономия была объектом изучения Клавдия Птолемея, определенных успехов он достиг и в математической картографии и географии.

ДВАДЦАТЫЙ ВЕК

Астрономию 20 в. можно разделить на два периода – до и после Второй мировой войны. В первый период появление мощных телескопов и других приборов дало астрономам возможность наблюдать слабые и далекие объекты, а новые научные теории, в особенности теория относительности и квантовая механика, позволили интерпретировать эти наблюдения. Удалось понять механизмы выделения энергии у Солнца и звезд, а также их эволюционный путь от рождения до смерти. Еще более грандиозными были открытия в космологии: удалось многое узнать о мире, в котором протекает жизнь звезд и миллиардов звездных систем, подобных нашей Галактике, о рождении и возможных вариантах эволюции этого мира. Новые факты потребовали изменить не только смысл слова «Вселенная», которое прежде использовали лишь для обозначения нашей Галактики, но и масштабы времени в астрономии с миллионов на миллиарды лет.См. также ОТНОСИТЕЛЬНОСТЬ; КВАНТОВАЯ МЕХАНИКА.

Астрономия как хобби

Астрономия считается точной наукой вроде математики или физики. Чтобы профессионально заниматься астрономией, нужно хорошо знать физику (иногда даже химию), владеть специальным математическим аппаратом и иметь навыки программирования. Кроме того, наука — это большая рутина, постоянное уточнение уже известных фактов и скрупулезный поиск неизвестных.

Хотя сами астрономы полагают, что их профессия — самая романтическая, многим обилие формул и вычислений кажется ужасно сложным и скучным.

Если вы из таких людей, я хочу вас успокоить: чтобы самостоятельно заниматься астрономией, прикоснуться к красоте ночного неба не нужно обладать математическим складом ума!

А что нужно?

На первых порах вам не понадобится ничего, кроме ясного и — желательно — темного неба. (В наши дни это становится настоящей проблемой!) Если вам понравится созерцать звезды и созвездия, наблюдать метеоры, Луну и движение планет, вы, возможно, захотите рассмотреть звездное небо подробнее. Тогда вы сможете по желанию выбрать себе бинокль или недорогой телескоп для общих наблюдений.

В конце концов вы поймете, что какие-то объекты или типы наблюдений вам нравятся больше, чем другие, и тогда придет пора покупать специализированное оборудование — более дорогое, но и более качественное.

Или не придет.

Может быть, вам будет достаточно того, что имеется под рукой, и будете наслаждаться простыми прогулками по звездному небу. А может быть, в какой-то момент вы решите, что астрономические наблюдения — просто не ваше занятие, и оставите его. Как и любое хобби, любительская астрономия — это прежде всего удовольствие и отдых, а уже потом все остальное. Если вы не испытываете положительных эмоций при наблюдении звездного неба, то тогда и заниматься этим не стоит.

Кстати, на вашем месте я бы не недооценивал познавательный момент астрономических наблюдений? Знаете ли вы, что сегодня любители астрономии регулярно совершают астрономические открытия? Они открывают новые, неизвестные до этого космические тела — астероиды и кометы, переменные звезды, сверхновые и новые звезды, и даже новые туманности!

Да вы и сами можете совершить астрономическое открытие! (Конечно, не сразу, но приобретя в деле астрономических наблюдений базовый опыт.) Это не шутки! Сейчас, при том, что в распоряжении профессиональных астрономов имеется куча суперкрутых телескопов, шансы на это не уменьшаются! Дело в том, что большие телескопы используются для наблюдения специальных объектов — никто не будет с помощью «Хаббла» искать новые кометы или внимательно следить за Юпитером. И потому для честолюбивых любителей сохраняется большое поле для деятельности.

Подробнее узнать, чем занимаются астрономы-любители, вы можете здесь.

Астрономия как философская наука

Определение науки «астрономия» появилось во времена античности и благополучно живёт в наши дни. Это изучение фундаментальных законов природы нашего мира, теснейшим образом связанного с большим космосом. Именно поэтому поначалу астрономия трактовалась как наука философская. Собственный мир с её помощью познаётся через знания небесных объектов — звёзд, планет, комет, галактик, а также тех феноменов, которые то и дело происходят за пределами земной атмосферы — сияние Солнца, солнечный ветер, космическая радиация и так далее.

Даже лексическое значение слова «астрономия» говорит об этом же: закон звёзд действует и здесь, на Земле, поскольку она является частью огромного космоса, который развивается согласно единому закону. Именно благодаря ему человечеству подарены эволюция, физика, химия, метеорология и любая другая наука. Всё в мире развивается посредством определённого движения небесных тел: формируются и развиваются галактики, умирают и вновь вспыхивают звёзды. Следует всегда помнить, с чего начиналась всякая другая наука. Большое несчастье, что астрономия в школе сейчас отсутствует. Эти знания и понимание огромности и ценности мира не заменить ничем.

Теоретическая астрономия

Теоретическая астрономия

Астрономы-теоретики используют широкий спектр инструментов, которые включают аналитические модели (например, политропы ждя приближенныя поведения звезд) и расчеты численных моделирований. Каждый из методов имеет свои преимущества. Аналитическая модель процесса, как правило, лучше дает понять суть того, почему это (что-то) происходит. Численные модели могут свидетельствовать о наличии явлений и эффектов, которых, вероятно, иначе не было бы видно.

Теоретики в области астрономии стремятся создавать теоретические модели и выяснить в исследованиях последствия этих моделирований. Это позволяет наблюдателям искать данные, которые могут опровергнуть модель или помогает в выборе между несколькими альтернативными или противоречивыми моделями. Теоретики также экспериментируют в создании или видоизменению модели с учетом новых данных. В случае несоответствия общая тенденция состоит в попытке сделать минимальными изменения в модели и откорректировать результат. В некоторых случаях большое количество противоречивых данных со временем может привести к полному отказу от модели.

Темы, которые изучают теоретические астрономы: звездная динамика и эволюция галактик; крупномасштабная структура Вселенной; происхождения космических лучей, общая теория относительности и физическая космология, в частности космологии звезд и астрофизика. Астрофизические относительности служат как инструмент для оценки свойств крупномасштабных структур, для которых гравитация играет значительную роль в физических явлениях и основой для исследований черных дыр, астрофизики и изучения гравитационных волн. Некоторые широко приняты и изучены теории и модели в астрономии, теперь включены в Lambda-CDM модели, Большой Взрыв, расширение космоса, темной материи и фундаментальные теории физики .

Чем не является астрономия?

Астрономия не ставит себе целью, не умеет и не может предсказывать судьбу и характер человека по звездам. Этим занимается астрология. Астрономы частенько обижаются, когда их называют астрологами. По правде говоря, астрономы уверены, что предсказывать судьбы отдельных людей, как, впрочем, и судьбы мира, по движению небесных светил невозможно.

Тем не менее, связь между астрономией и астрологией есть. В прошлом, когда еще не был выработан научный метод как таковой, между астрономией и астрологией не было четких границ. По сути, развитию астрономии в древности способствовали не только практические нужды, вроде составления календаря, но и астрологические прихоти сильных мира сего. Желая знать будущее, короли и императоры поддерживали астрологов и тем самым косвенно поощряли развитие астрономии, без которой невозможно было бы предсказывать расположение небесных светил на годы вперед.

Небесная механика

Вселенская гравитация стала известна миру благодаря Исааку Ньютону. Теперешние школьники слышали это имя только в связи с тремя законами физики. То, что законы эти вплотную связаны с небесной механикой, им невдомёк, поскольку уроков астрономии в школе нет.

Будет огромным счастьем узнать, что этот необходимейший предмет снова в строю. Учёный секретарь из Института космических исследований Российской академии наук Александр Захаров уверен, что существующий в стране дефицит учителей астрономии может быть пополнен быстро в случае возвращения этой дисциплины в учебный план. Директор планетария в Новосибирске Сергей Масликов уверен, что планируемое возвращение астрономии в школу вряд ли может состояться ранее, чем через пять-шесть лет. Однако министр образования и науки РФ Ольга Васильева заявляет, что этот час в неделю для изучения предмета астрономии школьникам нужно вернуть как можно быстрее.

Основные разделы астрономии, из каких состоит

В астрономии существует несколько самостоятельных разделов. Современная классификация делит их на 2 основных вида:

  1. Разделы, посвященные исследованию хода небесных тел.
  2. Разделы, изучающие структуру небесных объектов.

К первому разделу относятся астрометрия, теоретическая астрономия, астрофизика, небесная механика. Ко второму ― космохимия, космология, звездная астрономия, космогония.

Примечание

Широко известная астрология в список разделов астрономии не входит. Она представляет собой не науку или научное направление, а группу предсказательных и описательных практик, верований, традиций, связанных с предполагаемым воздействием небесных объектов на человека.

Всеволновая астрономия

Первые ученые-астрономы для изучения космического пространства использовали исключительно оптические телескопы. Следовательно, изучить и описать они могли лишь то, что непосредственно улавливал их взор. Сегодня же астрономия достигла значительных высот, ведь ученые могут вести свои наблюдения на различных длинах волн. Новые знания и технологии способствовали выделению совершенно новых дисциплин, таких как гамма-астрономия, радиоастрономия и рентгеновская астрономия.

Каждый космический объект излучает ряд волн, невидимых для человеческого глаза. Но их можно измерить специальными приборами. Необходимость таких измерений неоценимо важна. Например, гамма- или рентгеновское излучение, которое приходит из космоса на Землю, рассказывает о грандиозных процессах, происходящих в самых глубинках Вселенной. Из-за гигантских расстояний человек не может наглядно изучить все космические объекты. Все знания человечества о космосе базируются на излучении, которое исходит от небесных тел. Так удалось определить расстояние между объектами во Вселенной, их состав, возраст, размер и т.д.

Понятие «всеволновая астрономия» означает, что современные наблюдения за космическими телами ведутся во всех известных диапазонах электромагнитного излучения.

Пьер-Симон Лаплас (1749 — 1827)

Пьер-Симон Лаплас –  выдающийся ученый, который прославился открытиями и исследованиями в разных областях научной деятельности. Его имя известно в математике, физике, механике. На данный момент есть теорема Лапласа, существует физический закон Лапласа, функция Лапласа. Велики его заслуги и в астрономии. Именно ему принадлежит предположение о существовании других галактик, кроме Млечного Пути. Пьером-Симоном Лапласом была применена теория гравитации Ньютона к Солнечной системе. Он указал на взаимовлияние планет, вследствие которого наблюдается приближение и удаление их от Солнца. Также он научно обосновал ускорение Луны во время движения и показал, от чего зависит ее средняя скорость. Он выдвинул гипотезу о существовании черных дыр в космическом пространстве; предложил идею о том, что Солнечная система состоит из огромного количества газа, который вращается; предложил новый способ определения орбит космических тел. Именно ему принадлежит теория приливов.

Его фундаментальный труд «Небесная механика» стал революционным и дал ответы на многие вопросы, возникающие среди астрономов. За свои открытия и деятельность Пьер-Симон Лаплас был удостоен титула маркиза, награжден большим крестом, Орденом Почётного легиона, Орденом Воссоединения. Его имя высечено на Эйфелевой башне. В его честь названы улицы, астероид, кратер.

Метод параллакса в астрономии

Определение

Параллакс — изменение видимого положения объекта по отношению к удаленному фону, определяемое положением наблюдателя.

Явление параллакса используют для измерения расстояния до планет. Понять принцип данного исследования можно с помощью простых действий:

  • поднять вверх палец перед глазами так, чтобы его было видно на любом пестром фоне;
  • не меняя положение головы, смотреть на палец поочередно, правым и левым глазом.

В результате наблюдатель заметит, что при закрытии одного глаза и открытии другого палец будет смещаться относительно фона. При этом смещение увеличивается по мере приближения пальца к глазам. Данное явление объясняется расположением глаз, которые удалены друг от друга на некоторое расстояние, таким образом, что прямые линии, проведенные от пальца к глазам, формируют определенный угол. При построении этих прямых до фона, они продемонстрируют два варианта положения пальца. В процессе приближения пальца к глазам уголь становится больше, что увеличивает смещение. Аналогично, для измерения расстояния до луны с помощью метода параллакса необходимо провести наблюдения из пары точек, которые удалены друг от друга на сотни километров.

При использовании метода параллакса для исследования небесных тел в качестве неподвижного фона будет принято звездное небо, которое кажется таковым из-за большого удаления звезд от нашей планеты. Примерно в 1600 году удаленность планет Солнечной системы от Земли не позволяло достаточно точно измерить их смещение на фоне звездного неба, проводя наблюдения из двух обсерваторий. Однако в 1608 году, благодаря изобретению телескопа итальянским ученым Галилео Галилеем, удалось увеличить видимые габариты небесных объектов и малые смещения, которые связаны с параллаксом.

Метод параллакса характеризуется достаточно высокой точностью измерений. Однако этот способ ограничен в возможностях. С его помощью можно относительно точно вычислить расстояния до космических объектов, которые расположены неподалеку от нашей планеты и Солнечной системы. При необходимости определить более дальние расстояния возникают сложности. В этом случае точность измерений значительно снижается. Диаметр орбиты Земли будет недостаточен для того, чтобы сформировать нужный угол.

Изучение Солнечной системы

Долгое время человечество было убеждено, что все звёзды и планеты вращаются вокруг Земли. Система мира с неподвижной Землёй в центре была разработана греческим учёным Птолемеем во 2 веке до нашей эры и просуществовала более полутора тысяч лет. 

В 1453 году польский астроном Николай Коперник доказал, что Земля, как и другие планеты (на тот момент их было известно шесть), вращаются вокруг Солнца. Однако вплоть до XVII века церковь считала это учение ересью и боролась с его последователями. 

Одним из них был итальянский монах Джордано Бруно. В 1584 году он опубликовал исследование, в котором утверждал, что Вселенная бесконечна, а Солнце подобно остальным звёздам, просто находится гораздо ближе к Земле. Бруно был схвачен инквизицией и приговорён к сожжению на костре как еретик. 

Другим последователем Коперника стал итальянский учёный Галилео Галилей. Он создал первый телескоп, который позволил увидеть кратеры Луны, пятна на Солнце, открыть четыре спутника Юпитера и установить, что планеты вращаются вокруг своей оси. Чтобы не повторить судьбу Бруно, Галилей был вынужден отречься от своих идей.

В XVII веке немецкий астроном Иоганн Кеплер открыл законы движения планет — ему удалось установить связь между скоростью вращения планеты и её расстоянием от Солнца. Его идеи воспринял знаменитый английский физик Исаак Ньютон, создатель теории всемирного тяготения. 

В XVIII—XIX веках открытия в области оптики позволили создать более мощные телескопы, которые позволили учёным узнать больше о солнечной системе. Были открыты планеты Уран и Нептун. 

В 1951 году Советский Союз вывел на орбиту Земли первый искусственный спутник. С этого момента началась Космическая эра — эпоха практического изучения солнечной системы. 

В 1961 году Юрий Гагарин стал первым человеком, побывавшем в космосе, а в 1969 году космический корабль «Аполлон-11» доставил людей на Луну. 

В 1970-х годах Советский Союз и США запустили несколько десятков аппаратов для исследования Марса, Венеры и Меркурия, а запущенные в 1980-х аппараты «Вояджер-1» и «Вояджер-2» позволили получить данные о дальних планетах — Юпитере, Сатурне, Уране, Нептуне и их спутниках. Большую роль в изучении солнечной системы сыграл вывод на орбиту Земли космического телескопа «Хаббл» в 1990 году. 

В нынешнем десятилетии космические агентства разных стран планируют пилотируемый полёт на Марс. Экспедиция на другую планету станет величайшим событием в истории освоения солнечной системы. И всё же пока человечество находится в самом начале пути изучения космоса.

Николай Коперник (1473 — 1543)

Известный польский астроном Николай Коперник первым заговорил о гелиоцентрической модели мира. Эта идея дала старт первой революции в науке. Исследователь с помощью математических расчетов доказал, что Земля вращается вокруг Солнца и ей нужен год, чтобы сделать полный оборот по своей орбите. До этого все пользовались геоцентрической моделью мира. Новую систему Николай Коперник изложил в научном труде «О вращениях небесных сфер». Работа заняла около 40 лет. На протяжении этого времени он вносил коррективы и делал новые расчеты. Печатный вариант своей книги астроном увидел только перед смертью. Было время, когда инквизиция признала книгу еретической и запретила ее. Это длилось до 1833 года. Несмотря на это, научные труды принесли Николаю Копернику мировую славу. А его теория нашла свое продолжение в трудах Кеплера, Ньютона. Астроном получил всеобщее признание. Его именем названы звезда, кратеры, малая планета, химический элемент.

Кроме астрономических исследований ученый Николай Коперник сделал проект и принимал участие в сооружении гидравлической машины, участвовал в запуске польского монетного двора. Он талантливый художник и врач, оказывавший бесплатную медицинскую помощь. Ученому также принадлежит идея о всемирном тяготении.

Уильям Гершель(1738 — 1822)

Английского ученого Уильяма Гершеля по праву называют основоположником звездной астрономии. Именно Уильям Гершель со своим сыном Джоном открыл большое количество туманностей. Одновременно проводилось изучение комет. В дальнейшем было произведено их описание и составлены каталоги. Большую поддержку ученому оказывала сестра Каролина, также известный астроном.

Однажды, наблюдая в телескоп за звездным небом, Уильям Гершель заметил светящееся тело, которого не было на карте звездного неба. В течение нескольких дней он следил за светилом и установил, что оно движется среди звезд. Планета, открытая Уильямом Гершелем 13 марта 1781, получила название Уран. Это была седьмая планета Солнечной системы.  Именно английский ученый заговорил первым о звездных системах и доказал их существование на примере двойных и кратных звезд.

В исследователя не было средств на покупку телескопа, поэтому он начал конструировать приборы самостоятельно как для себя, так и для продажи. В дальнейшем с финансированием помог английский король. С помощью средств Георга ІІІ под руководством астронома Уильяма Гершеля началось строительство обсерватории.

Изучение ближних планет

В XX веке США активно развивали свою космическую программу по изучению ближних планет. В 1962 году космический зонд «Маринер-2» передал на Землю снимки Венеры. В 1973 году американским зондом «Маринером-10» были переданы на Землю общие виды Меркурия, самой ближней к Солнцу планеты.

Станция «Маринер»

СССР присоединился к программе изучения Венеры чуть позже. В октябре 1975 года было запущено 2 автоматические станции «Венера-9» и «Венера-10», которые приземлились на поверхности Венеры в разных районах, передав на Землю изображения ее поверхности, данные атмосферы, температуры, давления. Станции не обнаружили признаков биологической жизни на Венере. Интерес к планете немного уменьшился, и лишь в 1996 году американский зонд «Магеллан» передал на Землю серию уточняющих фотографий поверхности Венеры.

Снимки зонда «Магеллан»

Изучение Марса, как планеты, потенциально пригодной для жизни, вызывало больший интерес. В 1976 году США запустили космический аппарат «Викинг» с целью обнаружения признаков биологической жизни на Марсе.

«Викинг» на Марсе

«Викинг» приземлился на поверхность Марса и передал на Землю сведения о пустынном характере красной планеты, низкой температуре и отсутствии в марсианском грунте микроорганизмов. До начала XXI века на поверхность Марса было отправлено еще несколько американских и советских аппаратов – марсоходов с целью углубленного изучения загадочной планеты, очень похожей на Землю.

Когда появилась наука

На самом деле, астрономия возникла раньше других наук. Действительно, это одна из самых древних наук.Хотя какой-то конкретной даты образования астрономии назвать не удастся. Потому что зарождалась она очень давно. Приблизительно в III-II веках до нашей эры. Необходимость в изучении окружающего мира появилась у наших предков с потребностью к выживанию. Связано это, в первую очередь, со способностью ориентирования на местности. Также на наблюдениях создавались принципы земледелия. Уже в те далёкие времена люди учились отсчитывать время. Все знания использовались во многих сферах деятельности человека. Пожалуй, начиная от базовых потребностей, таких как пропитание, одежда. И заканчивая расширением кругозора и удовлетворением своего любопытства.

Античная астрономия

Принято считать, что основоположником науки является учёный Гиппарх. Ведь он один их первых, кто рассчитал движение Солнца и Луны. Вообще-то, он и описал их. Кстати, Гиппарх ввёл разделение звёзд на шесть классов, основываясь на их яркости. Между прочим, эта классификация актуальна до сих пор.

Разделы астрономии

Современная астрономия подразделяется на ряд отдельных разделов, которые тесно связаны между собой, и такое разделение астрономии, в известном смысле, условно.

1. Астрометрия — наука об измерении пространства и времени. Она состоит из:

а) сферической астрономии, разрабатывающей математические методы определения видимых положений и движений небесных тел с помощью различных систем координат, а также теорию закономерных изменений координат светил со временем;

б) фундаментальной астрометрии, задачами которой являются определение координат небесных тел из наблюдений, составление каталогов звездных положений и определение числовых значений важнейших астрономических постоянных, т.е. величин, позволяющих учитывать закономерные изменения координат светил;

в) практической астрономии, в которой излагаются методы определения географических координат, азимутов направлений, точного времени и описываются применяемые при этом инструменты.

2. Теоретическая астрономия дает методы для определения орбит небесных тел по их видимым положениям и методы вычисления эфемерид (видимых положений) небесных тел по известным элементам их орбит (обратная задача).

3. Небесная механика изучает законы движений небесных тел под действием сил всемирного тяготения, определяет массы и форму небесных тел и устойчивость их систем.

Эти три раздела в основном решают первую задачу астрономии, и их часто называют классической астрономией.

4. Астрофизика изучает строение, физические свойства и химический состав небесных объектов. Она делится на: а) практическую астрофизику, в которой разрабатываются и применяются практические методы астрофизических исследований и соответствующие инструменты и приборы; б) теоретическую астрофизику, в которой на основании законов физики даются объяснения наблюдаемым физическим явлениям.

5. Звездная астрономия изучает закономерности пространственного распределения и движения звезд, звездных систем и межзвездной материи с учетом их физических особенностей.

6. Космогония рассматривает вопросы происхождения и эволюции небесных тел, в том числе и нашей Земли.

7. Космология изучает общие закономерности строения и развития Вселенной.

Основа астрономии — наблюдения. Наблюдения доставляют нам основные факты, которые позволяют объяснить то или иное астрономическое явление. Дело в том, что для объяснения многих астрономических явлений необходимы тщательные измерения и расчеты, которые помогают выяснению действительных, истинных обстоятельств, вызвавших эти явления. Так, например, нам кажется, что все небесные тела находятся от нас на одинаковом расстоянии, что Земля неподвижна и находится в центре Вселенной, что все светила вращаются вокруг Земли, что размеры Солнца и Луны одинаковы и т.д. Только тщательные измерения и их глубокий анализ помогают отрешиться от этих ложных представлений.

Основным источником сведений о небесных телах являются электромагнитные волны, которые либо излучаются, либо отражаются этими телами. Определение направлений, по которым электромагнитные волны достигают Земли, позволяет изучать видимые положения и движение небесных тел. Спектральный анализ электромагнитного излучения дает возможность судить о физическом состоянии этих тел.

Особенностью астрономических исследований является также и то, что до последнего времени у астрономов отсутствовала возможность постановки опыта, эксперимента (если не считать исследований упавших на Землю метеоритов и радиолокационных наблюдений), и все астрономические наблюдения производились только с поверхности Земли.

Однако с запуском первого искусственного спутника Земли началась эра космических исследований, что позволило применить в астрономии методы других наук (геологии, геохимии, биологии и т.п.). Астрономия продолжает оставаться наблюдательной наукой, но теперь астрономические наблюдения производятся с межпланетных космических аппаратов и орбитальных обсерваторий.

Теоретическая и практическая астрономия

В общем смысле в современной астрономии существует два вида задач, поэтому с научной точки зрения эту науку можно разделить на два течения.

Задание теоретической части астрономии состоит в том, чтобы формировать методики расчетов законов движения небесных тел, используя в качестве исходных данных их видимое взаиморасположение. 

Практическая астрономия основана на том, что сейчас принято называть спутниковой навигацией

Она изучает способы решения задач, которые имеют важное значение для нормального функционирования навигационных приборов, определения точного времени и координат расположения небесных тел

Радиолокационный метод в астрономии

Определение

Радиолокационная астрономия является разделом астрономии, в рамка которого изучают небесные тела с помощью отправки к ним зондирующего радиосигнала и анализа отраженного радиоэха.

В процессе исследований комплекс, включая передатчик, антенну и приемник, то есть радиолокатор или радар, размещают на нашей планете или устанавливают на космический аппарат. Радиолокационная астрономия отличается от радиоастрономии изучением не собственного радиоизлучения небесных тел, а отраженных от них сигналов.

Метод отличается удобством, так как при измерении времени, в течение которого сигнал преодолевает путь туда и обратно, можно достаточно точно рассчитать расстояние до объекта, а в зависимости от того, как изменяется частота сигнала легко определить скорость объекта по принципу Доплера. Однако из-за быстрого убывания мощности отраженного сигнала по мере увеличения расстояния, ученым удается исследовать радиолокационным методом только тела, расположенные в Солнечной системе.

В 1961 году исследователи в Англии, СССР и США практически в одно и то же время использовали локацию Венеры, чтобы измерить расстояние до нее. Повторный эксперимент в 1964 году позволили значительно увеличить точность измерений с погрешностью в несколько километров. Применение современных радаров позволяет проводить также локацию Солнца, Меркурия, Марса, Юпитера с галилеевыми спутниками, Сатурна с кольцами и спутником Титаном, астероидов и ядер комет. Далее небесные тела стали исследовать, применяя космические зонды. Однако локация все еще остается эффективным методом проведения астрономических исследований. К данной методике была добавлена лазерная локация Луны, при которой использовали отражатели оптических импульсов, размещенных на ее поверхности. Таким образом, можно регулярно определять расстояние между нашей планетой и Луной с точностью до 1 сантиметра, что помогает в изучении сложного относительного перемещения этих двух объектов.

Примечание

Самый крупный в мире радиотелескоп, диаметр которого составляет 305 метров, расположен в обсерватории Аресибо на острове Пуэрто-Рико.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Дружный центр
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: