Что будет, если солнце погаснет

Новые и сверхновые звезды

Иногда на небе ученые наблюдают резкую сильную вспышку, которая не имеет никакого отношения к мерцанию переменных светил. Так образуются новые и сверхновые звезды. Новые получили свое название, потому что раньше считалось, что на месте появления такого объекта первоначально была пустота. В ХХ веке, когда проводилось регулярное фотографирование небосвода, установили, что на месте вспышки «новых» светил все-таки была небольшая слабозаметная звездочка, но в определенный момент она почему-то резко увеличила свое свечение.

Новые звезды вспыхивают раз в несколько лет. И даже, несмотря на то, что количество излучаемого света увеличивается в десятки тысяч раз, заметить их невооруженных взглядом невозможно, настолько далеко они расположены.

Вспышка сверхновой звезды – куда более масштабное явление. Энергия, которая образуется при взрыве, сопоставима с солнечной, которую оно излучает за несколько миллиардов лет. Сверхновые звезды вспыхивают еще реже. Данное явление происходит как в нашей Галактике, так и за ее пределами. В 1054 г в китайских и японских хрониках в Галактике был отмечен взрыв сверхновой звезды, который видели даже в дневное время. В 1987 году с помощью современной аппаратуры удалось наблюдать вспышку сверхновой от начала до конца. Произошла она в галактике Большое Магелланово Облако.

Почему же вспыхивают новые и сверхновые звезды? Ответ на этот вопрос удалось найти лишь в середине ХХ века. Во время очередной вспышки, специалисты заметили, что произошел взрыв одной звезды из двойной системы. В этой паре одна звезда похожа на Солнце, относится в главной последовательности. Вторая – очень плотный белый карлик, его диаметр в 100 раз меньше Солнца. Звезды находятся очень близко друг к другу. В результате приливных сил вещество из желтого светила «переливалось» на карлика. Там оно попало в условия высоких температур и давления, что запустило термоядерные реакции. На Солнце такие реакции происходят в недрах и являются относительно спокойными. В системе звезд это спровоцировало взрыв, в результате которого оболочка белого карлика начала сильно расширяться, а светимость двойной системы многократно увеличилась. Однако плотность оболочки была настолько низкой, что она никак не повредила желтой звезде. Сейчас светило продолжает «снабжать» карлика веществом и вполне вероятно, что через несколько сотен лет произойдет еще одна вспышка новой звезды на небе.

Со сверхновыми дела обстоят немного иначе. В созвездии Тельца учеными было обнаружено светящееся газовое облако – Крабовидная туманность. Сейчас оно расширяется и специалистам удается определить скорость этого расширения. Если в течение определенного времени скорость не менялась, то примерно 1000 лет назад, вещество из туманности находилось в одной точке – в том месте, где произошла вспышка сверхновой звезды. Так ученые определили, что Крабовидная туманность – это остатки после вспышки. Позже были обнаружены еще аналогичные туманности. Самое интересное, что в центре Крабовидной туманности находится звезда пульсар. Ее вещество гораздо плотнее, чем у белых карликов. Ели очень массивные светила в конце своей жизни теряют устойчивость, то это становится причиной взрыва сверхновой звезды.

Наблюдать за звездами увлекательно и познавательно. Даже не используя никакой современной аппаратуры, можно для себя сделать много удивительных открытий. На небосводе регулярно появляются новые объекты. Только в нашей Галактике Млечный Путь ежегодно рождается около пяти новых звезд.

Кислотный дождь падал на Землю в течение 100 000 лет

Такие осадки уничтожали все живое

В конечном счете период Земли-снежка закончился. Но на этом ужасы не прекратились. Считается, что после этого Земля прошла через период «интенсивного химического выветривания». Кислотный дождь постоянно омывал землю с небес в течение 100 000 лет.

Кислотный дождь был таким тяжелым и едким, что расплавил ледники, покрывающие планеты. Но нет худа без добра — в процессе этого в океан направились питательные вещества, которые позволили появиться жизни, направили кислород в атмосферу и обеспечили кембрийский взрыв жизни на Земле.

Но до того воздух был полон углекислого газа, а кислотный дождь отравил океан. Пока жизнь не разлетелась по Земле, она была ядовитой, негостеприимной пустыней.

Мощнейшая геомагнитная буря

В сентябре 1859 года астроном-любитель по имени Ричард Кэррингтон обнаружил самую мощную солнечную бурю в истории. Явление это получило название «Событие Кэррингтона». Крупная вспышка на Солнце вызывала мощнейший коронарный выброс массы (вещества из солнечной короны), который направился прямиком к Земле.

На тот момент пострадали только телеграфные системы Европы и Северной Америки. Кроме того, по всей планете наблюдались северные сияния. Однако в современном мире повторение «События Кэррингтона» привет к куда более катастрофическим последствиям. Энергосистема всей планеты, вероятнее всего, просто выгорит; миллионы домов останутся без электричества. Восстановление поврежденных энергосетей потребует долгих месяцев работ. От финансовых потерь люди оправятся только через несколько лет. Хранение еды и медикаментов станет невероятно сложной задачей. Все электрические службы и сервисы, включая коммуникацию, будут сильно повреждены, а возможно, и уничтожены.

Пугает то, что аналогичные явления случались и после 1859 года и вскоре могут повториться вновь. В 2012 году Земля, можно сказать, легко отделалась, когда коронарный выброс массы по мощности выше «События Кэррингтона» промазала по Земле. Ученые считают, что случись выброс раньше — и общество до сих пор оправлялось бы от вызванных повреждений.

Современный мир особенно уязвим потому, что он очень сильно полагается на электроэнергию. Кроме того, наука пока не придумала способа отражать подобные явления или даже предсказывать их (максимум возможно узнать за час до самого события).

Между 1996 и 2010 годами было отмечено 15 000 коронарных выбросов массы. Ученые считают, что это вопрос времени (возможно, в ближайшее десятилетие), пока «Событие Кэррингтона» не ударит по Земле точно в цель.

Атмосфера

Она устроена довольно сложно. Весь солнечный свет уходит в космос с ее нижнего уровня, который называют фотосферой. Основным источником света служит нижний слой фотосферы толщиной в 150 км. Толщина всей фотосферы составляет около 500 км. Вдоль этой вертикали температура плазмы снижается от 6400 до 4400 К.

В фотосфере постоянно возникают области пониженной (до 3700 К) температуры, которые светятся слабее и обнаруживаются в виде темных пятен. Количество солнечных пятен изменяется с периодом в 11 лет, но они никогда не покрывают больше 0,5% площади солнечного диска.

Над фотосферой расположен хромосферный слой, а еще выше — солнечная корона. О существовании короны известно с незапамятных времен, поскольку она превосходно видна во время полных солнечных затмений. Хромосферу же открыли сравнительно недавно, лишь в середине XIX века. 18 июля 1851 года сотни астрономов, собравшихся в Скандинавии и окрестных странах, наблюдали, как Луна закрывает солнечный диск. За несколько секунд до появления короны и перед самым концом полной фазы затмения ученые заметили у края диска светящийся красный полумесяц. Во время затмения 1860 года удалось не только лучше рассмотреть такие вспышки, но и получить их спектрограммы. Спустя девять лет английский астроном Норман Локьер назвал эту зону хромосферой.

Плотность хромосферы крайне мала даже по сравнению с фотосферой, всего 10−100 млрд частиц на 1 см³. Зато нагрета она сильнее — до 20 000˚С. В хромосфере постоянно наблюдаются темные вытянутые структуры — хромосферные волокна (их разновидность — всем известные протуберанцы). Они представляют собой сгустки более плотной и холодной плазмы, поднятой из фотосферы петлями магнитного поля. Видны и участки повышенной яркости — флоккулы. И наконец, в хромосфере постоянно появляются и через несколько минут исчезают продолговатые плазменные структуры — спикулы. Это своего рода путепроводы, по которым материя перетекает из фотосферы в корону.

День грядущий

От процессов в солнечных недрах непосредственно зависит грядущая судьба нашего светила. По мере уменьшения запасов водорода ядро постепенно сжимается и разогревается, что увеличивает светимость Солнца. С момента превращения в звезду главной последовательности она уже выросла на 25−30% — и этот процесс будет продолжаться. Примерно через 5 млрд лет температура ядра достигнет сотни миллионов градусов, и тогда в его центре загорится гелий (с образованием углерода и кислорода). На периферии в это время будет дожигаться водород, причем зона его сгорания несколько сдвинется по направлению к поверхности. Солнце потеряет гидростатическую устойчивость, его внешние слои сильно раздуются, и оно превратится в исполинское, но не особенно яркое светило — красный гигант. Светимость этого исполина на два порядка превысит нынешнюю светимость Солнца, но его жизненный срок будет много короче. В центре его ядра быстро накопится большое количество углерода и кислорода, которые вспыхнуть уже не смогут — не хватит температуры. Внешний гелиевый слой будет продолжать гореть, постепенно расширяясь и в силу этого охлаждаясь. Скорость термоядерного сгорания гелия чрезвычайно быстро растет с повышением температуры и падает с ее снижением. Поэтому внутренности красного гиганта начнут сильно пульсировать, и в конце концов дело может дойти до того, что его атмосфера окажется выброшенной в окружающий космос со скоростью в десятки километров в секунду. Сначала разлетающаяся звездная оболочка под действием ионизирующего ультрафиолетового излучения нижележащих звездных слоев ярко засияет голубым и зеленым светом — на этой стадии она называется планетарной туманностью. Но уже через тысячи или, в максимуме, десятки тысяч лет туманность остынет, потемнеет и рассеется в пространстве. Что касается ядра, то там превращение элементов прекратится вовсе, и оно будет светить лишь за счет накопленной тепловой энергии, все больше и больше остывая и угасая. Сжаться в нейтронную звезду или черную дыру оно не сможет, не хватит массы. Такие холодеющие остатки почивших в бозе звезд солнечного типа называют белыми карликами.

Корона — самая горячая часть атмосферы, ее температура достигает нескольких миллионов градусов. Этот нагрев можно объяснить с помощью нескольких моделей, базирующихся на принципах магнитной гидродинамики. К сожалению, все эти процессы очень сложны и изучены весьма слабо. Корона также насыщена разнообразными структурами — дырами, петлями, стримерами.

С чего начиналось?

Началось всё 4,6 миллиарда лет назад в «звёздной колыбели» — облаке газа размером 300 на 50 световых лет. Некогда этот газ входил в состав массивных звёзд, взорвавшихся как сверхновые. Потом газ остыл и гравитация преодолела внутреннее давление тучи, в результате чего газопылевая туманность начала распадаться на отдельные фрагменты, каждый из которых, закручиваясь, сжимался к собственному центру. Одному из этих клочьев предстояло стать Солнцем.

Сжимаясь, газ нагревается, но, поскольку часть энергии уносится излучением, дальнейшему уплотнению это не препятствует. Представляя собой приплюснутую сферу размером с орбиту Марса, протосолнце уже ярко светило. Правда, лишь в тепловом диапазоне. Сияние раскалённых внутренних областей ещё не пробивалось через тучи пыли. Чуть позже в центре диска вспух тусклый багровый шар. В недрах рождающейся звезды температура достигла миллиона кельвинов, и начались термоядерные реакции. Но только начались. Поначалу их интенсивность была невелика, и остановить сжатие они не могли.

Молодое Солнце было огромно — до современной орбиты Меркурия. Основным источником энергии оставалось гравитационное сжатие. Быстро «сдуваясь» и твердея, взрослеющее светило выбрасывало мощные потоки солнечного ветра, разгоняющего к границам системы невостребованные остатки газа.

Красный гигант

Превращение желтого карлика в красного гиганта является одним из самых необычных превращений, известных современной науке: гелиевое ядро Солнца, размером с гигантскую планету, сжимается и нагревается. В ответ на это Солнце станет шире в 100 раз. Разросшееся светило поглотит Меркурий и Венеру, а возможно, и Землю. Астрономы, наблюдающие из другой Солнечной системы, классифицировали бы эту раздутую версию нашего Солнца как красного гиганта.

Необходимо отметить, что с превращением Солнца в красный гигант неизбежно произойдут новые виды термоядерных реакций, в результате которых ядро звезды еще больше сожмется и нагреется. Когда температура ядра достигнет 100 миллионов градусов по Цельсию, гелий воспламенится и начнет плавиться в углерод и кислород. Это приведет к тому, что Солнце будет несколько уменьшаться, но через некоторое время – и в течение следующих 100 миллионов лет – оно снова начнет расширяться. На последней фазе жизни произойдет циклический, мягкий выброс газа – астрономы называют это планетарной туманностью.

Вот какую красоту оставляют после себя красные гиганты

Еще три с половиной миллиарда лет спустя яркость Солнца возрастет на 40%. К этому времени, как полагают исследователи, наша планета превратится в нечто, напоминающее современную Венеру: вода с поверхности Земли полностью исчезнет, что приведет к окончательной гибели всех наземных организмов (при условии, что они смогли адаптироваться к изменившимся условиям миллиарды лет назад). Спустя еще 6,4 миллиардов лет, Солнце начнет относительно быстро расширяться, сохраняя постоянную светимость. В итоге через 7 миллиардов лет от настоящего времени наша родная звезда превратится в субгиганта – звезду, в ядре которой закончилось все водородное топливо.

Вспышки, замеченные человеком

1 сентября 1859 года английский астроном Ричард Кэррингтон заметил, что от Солнца отделились два ослепительных шара, которые быстро росли. Мощная вспышка привела к выбросу огромного облака плазмы. Она врезалась в магнитосферу Земли и спровоцировала мощнейшую магнитную бурю в истории! Ночь над Америкой и Европой стала днем. Было светло от всполоха северного сияния. Казалось, что города охвачены пламенем. Пропадало электричество, вышел из строя телеграф. Из аппаратов сыпались искры, поджигая бумагу. Многие тогда подумали, что наступил конец света.

Событие Кэррингтона стало ярким примером того, какую опасность Солнце может представлять для человеческой цивилизации. Сегодня, когда электричество проникло во все сферы жизни, последствия подобной солнечной бури могли бы быть куда более масштабными!

Например, 13 марта 1989 года на Солнце произошла далеко не самая мощная вспышка. Тем не менее вся провинция Квебек на девять часов погрузилась во тьму. В системе электроснабжения возникли индукционные токи, которые пережгли трансформаторы. Миллионы людей остались без света.

А если представить, что магнитная буря будет в несколько раз сильнее? Тогда человечеству грозит глобальный блэкаут. В условиях, когда электроника контролирует буквально все: промышленность, финансы, медицину, безопасность, оборонные технологии — такое событие приведет к самым непредсказуемым последствиям, от масштабного экономического кризиса до начала ядерной войны. Конечно, с тех пор было вложено много миллиардов долларов в защиту сетей от перегрузок. Но случись на Солнце супервспышка, человечество откатится на десятки лет назад в своем развитии. В один момент мы можем остаться без связи, телевидения и многих других важных технологий.

Солнечные проблемы

Несмотря на то что Солнце — это самый крупный и самый заметный объект земного неба, нерешенных проблем в физике нашего светила хватает. «Мы знаем, что магнетизм Солнца чрезвычайно сильно влияет на динамику его атмосферы — к примеру, порождает солнечные пятна. Но как он возникает и как распространяется в плазме, еще не выяснено, — отвечает на вопрос «ПМ» директор американской Национальной солнечной обсерватории Стивен Кейл. — На второе место я бы поставил расшифровку механизма возникновения солнечных вспышек. Это кратковременные, но крайне мощные выбросы быстрых электронов и протонов, сочетающиеся с генерацией столь же мощных потоков электромагнитного излучения самых разных длин волн. О вспышках собрана обширная информация, однако разумных моделей их возникновения пока нет. Наконец, надо бы понять, какими способами фотосфера подпитывает энергией корону и разогревает ее до температур, которые на три порядка превышают ее собственную температуру. А для этого прежде всего необходимо как следует определить параметры магнитных полей внутри короны, поскольку эти величины известны далеко не в полной мере».

Жизненный цикл Солнца

Эволюция Солнца – вопрос, интересующий не одно поколение астрономов. Ученые оценивают возраст Солнца в 4,5 миллиарда лет. Оно возникло из газопылевого облака, сжимающегося под воздействием сил гравитации. Из такого же облака возникли и все остальные объекты Солнечной системы, в том числе и наша планета. Из-за сжатия начинает возрастать плотность и температура. Когда температура и давление возросли до необходимых значений, начались термоядерные реакции. Так, собственно, и начался жизненный цикл Солнца.

Температура светила увеличивается на 10 процентов каждые 1,1 млрд. лет. Это дает основания предположить, что раньше температура воздуха на планете была ниже, а на Венере, вероятно, могла бы существовать вода в жидкой фазе (сейчас температура Венеры такова, что на ней может плавиться свинец). Поскольку в будущем светимость Солнца будет возрастать, это приведет к увеличению температуры на Земле. Из-за высокой температуры испарятся океаны, молекулы воды, увлекаемые движением, улетучатся в космическое пространство и разложатся на атомы кислорода и водорода, а сама Земля превратится в безжизненное космическое тело.

Жизненный цикл Солнца

Из-за уменьшения количества водорода на Солнце будет уменьшаться ядро. Но сама звезда «раздуется». Примерно через 6,5 млрд лет водород на Солнце выгорит. Однако ядерные реакции синтеза на этом не остановятся: начнет выгорать гелий, причем этот процесс будет происходить не в ядре, а в оболочке Солнца. Вследствие этого размеры Солнца увеличатся, и оно достигнет орбиты Земли. В этой стадии оно будет красным гигантом.

Однако рано или поздно выгорит гелий. Это произойдет примерно за 110 миллионов лет. В результате пульсаций внешние слои Солнца постепенно отделятся от ядра. Солнечное ядро превратится в белый карлик, и его диаметр будет примерно соответствовать нынешнему земному. Это при том, что масса ядра будет только вдвое меньше нынешнего Солнца.

Белый карлик будет медленно охлаждаться. В этом объекте не протекают ядерные реакции. Приблизительно через 10 миллиардов лет из Солнца останется черный карлик.

Звезда Вольфа — Райе

В созвездии Стрельца содержится потенциальная угроза, которая может отправить все живое на Земле обратно в мезозойскую эру. Внутри огненной спирали, имеющей название WR 104, содержится две умирающие звезды, оборачивающиеся вокруг друг друга. Судьба обеих звезд уже предопределена. Они обе должны превратиться в сверхновые. Дело в том, что одна из звезд находится, что называется, уже на самом последнем издыхании, фактически перед самим взрывом сверхновой. Эта звезда относится к классу звезд Вольфа — Райе и представляет собой космическую часовую бомбу.

Конкретно данная звезда Вольфа — Райе станет сверхновой в ближайшие несколько сотен тысяч лет. И из-за своего расположения, мощнейшие гамма-лучи, которые звезда буквально выстрелит в последний миг своей жизни, могут направиться по направлению к Земле. Вспышки гамма-лучей (или гамма-всплески) в настоящий момент рассматриваются учеными как самые мощные и масштабные космические выбросы взрывного характера во Вселенной. Гамма-всплеск продолжительностью в одну минуту может содержать в себе столько энергии, сколько Солнце способно выработать лишь за свой целый жизненный цикл в 10 миллиардов лет!

Так как эти лучи двигаются со скоростью света, то мы, возможно, даже не успеем (а точнее, не сможем) их увидеть. Хотя спиральная звезда WR 104 находится примерно в 8000 световых лет от нас, она способна привести к катастрофическим последствиям для жизни на Земле. Если эти гамма-лучи в нас попадут, то речь пойдет уже о масштабном вымирании. Нас будут ожидать сельскохозяйственные катастрофы, кислотные дожди, а в качестве бонуса — голод для выживших (если такие вообще будут).

Более прохладный климат и ослабленный озоновый слой позволят большему объему губительных ультрафиолетовых лучей проникнуть в нашу атмосферу. Все те, кто живет на той стороне Земли, которая будет находиться лицом к вспышке в момент удара, испытают радиационное воздействие, по объему аналогичное ядерному взрыву. Выжившие же очень скоро погибнут от лучевой болезни.

Новые аспекты в теме внеземной жизни в связи со смертью Солнца

На примере других звезд мы знаем, что за стадией красного гиганта следует стадия сброса его оболочки, и образование планетарной туманности с белым карликом внутри. Процесс сброса оболочки приведет к дальнейшей дестабилизации гравитационного поля Солнечной Системы, что повлечет за собой сильное смещение орбит всех планет нашей системы, а также астероидов и комет. В ходе этой дестабилизации одни тела могут столкнуться с Солнцем, с другими объектами Солнечной Системы или быть выброшенными за пределы Солнечной Системы в межзвездное пространство. Нынешние поиски транзитных планет у белых карликов подтверждают эти предположения. Так вблизи белых карликов практически не наблюдаются крупные планетоподобные объекты (все современные находки в этой области ограничены лишь объектами размерами с Цереру или меньше).

Прогнозирование динамики изменения радиуса зоны обитаемости у Солнца во время стадии красного гиганта с течением времени

Земля воняла тухлыми яйцами

Приятным запах Земли точно не назовешь

Когда мы рассуждаем о том, какой была планета, мы руководствуемся не только догадками и теориями. Ученые почти наверняка уверены, что знают, каким был запах планеты в прошлом. Если бы кто-нибудь понюхал воздух 1,9 миллиарда лет назад, он четко различил бы запах тухлых яиц.

Все потому, что океаны были полны газообразных бактерий, питающихся солью в морской воде. Бактерии брали соль и выпускали сульфид водорода, заполняя воздух характерной вонью, которую мы ассоциируем с яйцами, которые уже всё.

И это ученые еще стараются выражаться помягче. Будем честны — у нас есть существа, которые ежедневно испускают сульфид водорода в воздух. Можно сказать, что мир прошлого пах пердежом.

Глобальные угрозы и риски

Не знаю, как так получилось, но одни из моих любимых тем – это инфекционные болезни и будущие угрозы. И я говорю не про инфекционные болезни – я все-таки не имею медицинского образования, да и специалистов, к счастью, хватает. Речь о глобальных рисках. И правда, как часто вы задумываетесь о том, каким будет мир через 50, 100 или 400 лет?

Так как это одна из моих излюбленных тем, я попыталась понять почему. Возможно, причина заключается в излишней тревожности, которая привела меня прямиком к фильмам ужасов. Как показали результаты недавних исследований, просмотр хорроров может помочь в борьбе с тревогой и стрессом (путем отвлечения внимания) и является своего рода успокоительным – любители ужасов лучше спят. Исследователи также пришли к выводу, что популярность фильмов ужасов возросла в связи с пандемией, а любители жанра оказались более подготовлены к эпидемии.

Выжить во время зомби-апокалипсиса – задача практически не выполнимая.

Излишняя тревожность, как выяснила еще одна команда ученых, связана с так называемым «болезненным любопытством», когда человек целенаправленно ищет информацию о разнообразных угрозах, а также с тревогой и депрессией. И, учитывая, что мне свойственна тревожность, болезненное любопытство, а еще я лечусь от депрессии, судьба моя, кажется, была предрешена.

Не знаю, многие ли разделяют эти интересы, качества или болезни, но разговор о глобальных рисках интересует далеко не всех. Это отметил даже главный астроном Великобритании лорд Мартин Рис в своей лекции посвященной будущему человечества. Оказалось, даже среди ученых не так много желающих изучать потенциальные риски, угрожающие стереть человечество с лица Земли. И речь не только об изменении климата, ведь существует множество иных, не менее опасных угроз, часть из которых несут технологии.

Изменение климата влечет за собой катастрофические последствия.

И, судя по всему, будущее нас ждет так себе. Недавно Нобелевскую премию по физике вручили за создание климатических моделей. Это означает, что у нас появился инструмент, который предсказывает будущие климатические изменения, учитывая множество факторов одновременно.

Могут ли погаснуть все звезды

Поскольку образование звезд продолжится, умирающие звезды будут сбрасывать свое топливо в межзвездное пространство и неудавшиеся звезды будут сливаться воедино. При этом количество материала для изготовления звезд будет ограничено. Даже самый долгоживущие звезды будут существовать каких-то 100 триллионов лет (1014), а спустя квадриллион лет (1015) формирования звезд иссякнет полностью. Лишь случайные столкновения или слияния между неудавшимися звездами или их остатками будут подсвечивать нашу галактику; в остальном процесс будет ввергать ее в холод и тьму. Наконец, белые карликовые звезды станут черными, когда остынут и испустят свою энергию. Да, это займет много времени (порядка 1016 лет), в миллион раз больше текущего возраста Вселенной. Атомы все еще будут, но их температура будет чуть выше абсолютного нуля. Вот тогда-то ночное небо будет действительно темным и черным, без какого-либо видимого света, поскольку все звезды прекратят свое существование. Во всяком случае в нашей местной группе галактик.

Солнце может сжечь что угодно.

Сколько времени потребовалось бы нашему черному карлику (который когда-то был нашим Солнцем), чтобы встретить другого, слиться с ним и оживить его? Между нами, Андромедой и остальной частью местной группы порядка триллиона звезд и звездных останков. В этой хаотической системе обычная система звезд может долго-долго ни с чем и ни с кем не сталкиваться, но ведь у нас есть время. Через 1021 лет черный карлик в центре нашей Солнечной системы случайным образом столкнется с другим черным карликом, породит взрыв сверхновой типа Iа и уничтожит то, что осталось от нашей Солнечной системы.

Такой будет конечная судьба многих звезд нашей местной группы, но не всех и даже, наверное, не нашей. Есть другой процесс, который будет более эффективным, а значит и более вероятным для нас: гравитационное выталкивание из местной группы вследствие процесса насильственной релаксации. При наличии нескольких тел на гравитационно хаотичной орбите, одно из них однажды выбрасывается, оставляя другие более тесно связанными. Это происходит в шаровых скоплениях с течением времени и объясняет, почему они настолько компактны, а также почему существует так много слившихся воедино старых звезд в ядрах этих древних реликтов.

В космосе все не так просто.

Какой будет Земля через миллиард лет?

По словам авторов исследования, при отсутствии кислорода наша планета вернется в состояние архейской Земли. Архейский эон — это самый древний этап существования планеты. По расчетам ученых, он начался примерно 3,8 миллиарда лет назад и длился вплоть до кислородной катастрофы около 2,5 миллиарда лет назад. В те времена на нашей планете могли существовать разве что анаэробные (не нуждающиеся в кислороде) организмы. Так что через миллиард лет хозяевами Земли могут снова стать микробы. В этом особенно уверен один из авторов научной работы Кадзуми Одзаки (Kazumi Ozaki):

Через миллиард лет на Земле останутся только анаэробные организмы, которым не нужен кислород

Другой автор исследования Крис Рейнхард (Chris Reinhard) подчеркнул, что кислород исчезнет не ранее чем спустя миллиард лет. Но когда это время наступит, жизненно необходимый кислород будет исчезать стремительно. Живые организмы могут даже не заметить, как кислорода в атмосфере Земли станет примерно в миллион раз меньше, чем сейчас. Это станет переломным моментом в жизни большинства живущих сегодня организмов, особенно людей. Так что на существование человечества спустя 1-2 миллиарда лет надеяться точно не стоит.

Архейский эон в представлении художника

Существенно повысится активность парниковых газов

Одна из первых вещей, которая случится после того, как Солнце выработает весь свой водород, – оно станет гораздо ярче. Чем ярче будет становиться звезда, тем больше солнечной энергии будет получать наша планета. Газы, содержащиеся в нашей атмосфере, такие как углекислый газ, метан и оксид азота, работают как покрывало, защищая нашу планету от излишнего тепла звезды и позволяя поддерживать на ней жизнь. Так как Солнце будет работать фактически сверхурочно, этим газам придется сдерживать больший объем энергии. На Земле станет очень жарко, вода на ней начнет испаряться и образовывать плотные облака в атмосфере.

Эти облака некоторое время будут защищать Землю от возросшего радиоактивного излучения. Однако после какого-то времени тепла на планете накопится слишком много, и океаны начнут в буквальном смысле закипать. С этого момента жизнь на Земле существовать не сможет. Если к этому моменту мы еще не погибнем, то в конечном итоге обязательно умрем от недостатка воды и очень сильного тепла.

Будет ли космос существовать всегда

Гравитационный выброс происходит примерно в 100 раз чаще случайного слияния, а значит наша звезда и остальные связанные планеты, вероятно, будут выброшены в бездну уже пустого пространства примерно через 1019 лет. Но ничто не вечно, даже космос. Каждая орбита — даже гравитационные орбиты в общей теории относительности — медленно распадаются со временем. Может потребоваться очень много времени, возможно, 10150 лет, но в конечном итоге орбиты Земли развалятся и она устремится по спирали к центральной массе нашей Солнечной системы. Такой будет наша судьба, если нас выбросит.

Но если мы остаемся в гигантской галактике, в которую превратится Млекомеда, нам не суждено оказаться в черной дыре в центре галактике. Чтобы это произошло, потребуется 10200 лет, но черные дыры столько не живут. Они медленно испаряются в виде излучения Хокинга. Благодаря этому распаду, даже самые массивные черные дыры во Вселенной будут жить не больше 10100 лет, а черная дыра солнечной массы — каких-то 1067 лет.

После распада черной дыры останется только темная материя, а значит, Земля устремится к черному карлику, который однажды был нашим Солнцем. Вне зависимости от того, сколько раз наш мир мог оказаться и оказывался в огне, наша конечная судьба — замерзнуть в холодной, пустой Вселенной. Все пройдет. И это тоже.

Источники

  • https://www.mirf.ru/science/solnce-kogda-pogasnet/https://hi-news.ru/science/kakoj-konec-zhdet-solnechnuyu-sistemu.html

Жизнь и смерть Солнца

Начнем с того, что Солнце – это обычная звезда. Она озаряет Солнечную систему светом и теплом, устанавливая суточные циклы сна и бодрствования у всех живых организмов на нашей планете. Но Солнце не всегда будет таким. Наступит время, когда наша родная звезда погибнет, а вся Солнечная система превратится в очень неприятное место

Важно понимать, что все физические процессы протекающие на Солнце, в значительной степени определяют физику планет (по крайней мере ближайших к звезде)

Астрономы классифицируют Солнце как молодую звезду с высоким содержанием металлов. Это значит, что Солнце образовалось из останков более древних звезд. Текущий возраст нашего светила исследователи оценивают приблизительно в 4,6 миллиардов лет, а значит, звезда прожила примерно половину своей жизни, так как ее взросление – фаза главной последовательности – длится 10 миллиардов лет. После завершения этого срока наступит следующий этап ее эволюции. По мере того, как Солнце расходует запасы своего водородного топлива, оно становится все горячее, а его светимость увеличивается. К тому моменту, когда Солнце отметит свой 5,6 миллиардный день рождения, оно будет в 11 раз ярче, чем сегодня.

Ничто во Вселенной не вечно, тем более звезды

Исследователи полагают, что уже к этому моменту на нашей планете либо произойдет кардинальное изменение жизни, либо она и вовсе исчезнет. Вообще, некоторые ученые считают, что человеческая цивилизация погибнет задолго до того, как Солнце превратится в красного гиганта. Подробнее об этом я рассказывала в предыдущей статье.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Дружный центр
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: