Все об атмосферном воздухе

Особенности мезосферы

Мезосфера — слой, расположенный в промежутке между 45 и 90 километрами. Его верхняя часть называется мезопаузой и является самым холодным местом: воздух здесь охлаждается до -143 градусов.

Этот участок атмосферы пока не очень хорошо изучен. Это обусловлено слишком малым давлением газов: оно в несколько тысяч раз ниже того, что наблюдается у поверхности планеты. Воздушные шары, поднявшись до определённой точки, не летят выше, а зависают. Использовать для изучения мезосферы самолёты с реактивными двигателями тоже не получается, так как принцип их движения в условиях, когда газ сильно разрежен, утрачивает смысл. Аэродинамика корпуса и крыльев становится бесполезной.

Перемещаться в мезосфере могут только ракетопланы или ракеты. К первым относят самолёты, оснащённые ракетными двигателями. Одна из таких машин — X-15. Это самый быстрый ракетоплан, сумевший подняться на высоту 108 км. Однако такие аппараты летят слишком быстро, а за короткое время не удаётся провести основательного изучения воздушного слоя. Летательные аппараты либо движутся выше, либо опускаются, в обоих случаях покидая мезосферу.

В этом же слое сгорают и метеориты. Наблюдатели, находящиеся на земле, видят своеобразное свечение.

Помимо этого, каждый день на Землю оседает от 100 до 9−10 тыс. тонн космической пыли. Эти частицы оказывают некоторое влияние на дождеобразование, хотя кардинально изменить циркуляцию атмосферы они неспособны.

Примечания

  1. Будыко М. И., Кондратьев К. Я. Атмосфера Земли // Большая советская энциклопедия. 3-е изд. / Гл. ред. А. М. Прохоров. — М.: Советская Энциклопедия, 1970. — Т. 2. Ангола — Барзас. — С. 380—384.
  2. Thompson A.  (англ.). space.com (9 April 2009). Дата обращения 19 июня 2017.
  3. . Earth System Research Laboratory. Global Greenhouse Gas Reference Network. Дата обращения 6 февраля 2017.
  4. при 0,03 % по объему
  5. Хромов С. П. Влажность воздуха // Большая советская энциклопедия. 3-е изд. / Гл. ред. А. М. Прохоров. — М.: Советская Энциклопедия, 1971. — Т. 5. Вешин — Газли. — С. 149.
  6. Dr. Tony Phillips.  (англ.). SpaceDaily (16 July 2010). Дата обращения 19 июня 2017.

Экологическая охрана

В последнее время состояние атмосферного воздуха вызывает озабоченность у экологов. Вместе с развитием промышленности растут и экологические риски. Заводы и промзоны не только разрушают озоновый слой, нагревая атмосферу и насыщая ее углеродными примесями, но и снижают гигиеническое качество воздуха. Поэтому в развитых странах принято проводить комплексные мероприятия по охране воздушной среды.

Основные направления охраны:

  • Законодательное регулирование.
  • Разработка рекомендаций по размещение промышленных зон с учетом климатических и географических факторов.
  • Проведение мероприятий по снижению количества выбросов.
  • Санитарно-гигиенический контроль на предприятиях.
  • Регулярный мониторинг состава.

К мероприятиям по охране также относится высадка зеленых насаждений, создание искусственных водоемов, создание барьерных зон между промышленными и жилыми кварталами. Рекомендации по проведению охранных мероприятий разработаны в таких организациях как ВОЗ и ЮНЕСКО. Государственные и региональные рекомендации разработаны на основе международных.

В настоящее время проблеме гигиены воздушной среды уделяется все больше внимания. К сожалению, на данный момент принятых мер недостаточно, чтобы полностью минимизировать антропогенный вред. Но можно надеяться, что в будущем, вместе с разработкой более экологичных производств, удастся снизить нагрузку на атмосферу.

Ссылки

  1. Кастинг, Дж. Ф. и Кэтлинг, Д. (2003). Эволюция обитаемой планеты. Ежегодный обзор астрономии и астрофизики.
  2. Меркадо, Дж. (1999). Фотосинтез и изменение состава атмосферы. Наука к Международному дню.
  3. Пла-Гарсия, Дж. И Менор-Сальван, К. (2017). Химический состав первобытной атмосферы планеты Земля. Химические исследования. Летопись химии.
  4. Кинтеро-Плаза, Д. (2019). Краткая история атмосферы Земли. Метеорологический календарь AEMET.
  5. Саган, К. и Маллен, Г. (1972). Земля и Марс: эволюция атмосферы и температуры поверхности. Наука.
  6. Тиан Ф., Мультяшный О.Б., Павлов А.А. и Де Стерк, Х. (2005). Богатая водородом атмосфера ранней Земли. Наука.

Азот

Как и у остальных газов, его плотность существенно зависит от давления (в отличие от твердых тел и жидкостей) и от температуры. Таким образом, значения его удельного объема меняются в зависимости от этих переменных. Отсюда необходимость определения ее удельного объема, чтобы выразить систему через интенсивные свойства.

Без экспериментальных значений, исходя из молекулярных соображений, трудно сравнить плотность азота с плотностью других газов. Молекула азота линейна (N≡N), а молекула воды — угловатая.

Поскольку «линия» занимает меньше объема, чем «Бумеранг”, Тогда можно ожидать, что по определению плотности (м / В) азот плотнее воды. При плотности 12506 кг / м3, удельный объем в условиях, в которых было измерено это значение, составляет 0,7996 м3/ Кг; это просто обратная величина (1 / ρ).

Состав современной атмосферы Земли

Без кислорода жизнь на Земле невозможна, однако в чистом виде он стал поступать на позднем этапе развития планеты. Некоторые ученые считают, что кислород начал возникать за счет обмена веществ древних растений и стал побочным эффектом процесса фотосинтеза. Со временем он накопился в атмосфере и послужил причиной ряда изменений в характере атмосферы Земли и развитии всего живого.

Атмосфера Земли состоит в основном из двух газов — азота (78%) и кислорода (21%). Credit: present5.com.

В современный состав воздуха входят 4 основных и несколько второстепенных газов, а также примеси, зависящие от характера поверхности Земли и ее области, от вида обитателей. Человек занимает в ее формировании одну из первостепенных ролей. Атмосферными примесями являются:

  • перекись водорода;
  • водяной пар;
  • аммиак;
  • озон;
  • окись углерода;
  • сероводород;
  • пыль;
  • соли;
  • сернистый газ.

Баланс кислорода

С точки зрения биологии, кислород преобладает на планете Земля. Его содержание практически неизменно и составляет 21%. Кислород поглощается во время дыхания, а вырабатывается вследствие процесса фотосинтеза. Все это тесно взаимосвязано и является основой природного баланса кислорода в атмосфере.

Распространение кислорода на Земле. Credit: infourok.ru.

Азот

Содержание данного газа в нижних слоях атмосферы составляет 78,084%. Азот инертен и в химических соединениях (нитратах) занимает важную ступень в процессе обмена веществ растительного и животного мира. Живые существа не способны усваивать азот напрямую из воздуха, однако он входит в пищу, которая необходима для ежедневного восполнения энергии. Молекулы газа захватываются микроорганизмами, обитающими в корнях бобовых культур. Сформировавшиеся нитраты становятся доступны для животных, поедающих эти растения.

Благородные газы

В атмосфере содержатся газы, не участвующие в биологических процессах, но играющие первостепенную роль при переносе энергии в высших слоях, это:

  • аргон — 0,934% ;
  • гелий — 0,00000524%;
  • неон — 0,000018%;
  • ксенон — 0,000000087%;
  • водород — 0,0000005%.

Со времен становления промышленности (более 120 лет назад) человечество увеличило выброс углекислого и прочих газов в слои атмосферы, и в период с 1869 по 1940 гг. общая температура воздуха выросла на 1°C.

Как образуются твердые частицы в воздухе?

Размер взвешенных частиц в атмосфере варьируется: от нескольких нанометров до десятков микрометров. Крупные частицы возникают механически путем дробления более крупных твердых частиц. Эти частицы могут включать переносимую ветром пыль от сельскохозяйственных работ, частицы почвы, грунтовых дорог или пыль от деятельности горнодобывающих предприятий. Движение создает дорожную пыль и турбулентность воздуха, которая поднимает дорожную пыль. У берегов морей и океанов при испарении морских брызг могут образовываться твердые частицы. Пыльцевые зерна, споры плесени, а также части растений и насекомых также относятся к крупным частицам (РМ10).

Более мелкие частицы, называемые мелкой фракцией, в основном образуются из газов. Самые мелкие частицы размером менее 0,1 мкм образуются в результате зародышеобразования, то есть конденсации веществ с низким давлением пара, образующихся в результате высокотемпературного испарения или химических реакций в атмосфере с образованием новых частиц (ядер).

Четыре основных класса источников с достаточно низким равновесным давлением для образования частиц типа ядра могут давать твердые частицы:

  • тяжелые металлы (испаряются при сгорании),
  • элементарный углерод (из коротких молекул углерода, образующихся при сгорании),
  • органические вещества,
  • углерод, сульфаты и нитраты.

Частицы в этом диапазоне или режиме зародышеобразования увеличиваются за счет коагуляции, то есть комбинации двух или более частиц с образованием более крупной частицы, или за счет конденсации, то есть конденсации молекул газа или пара на поверхности существующих частиц. Коагуляция наиболее эффективна для большого количества частиц, а конденсация наиболее эффективна для больших площадей поверхности. Следовательно, эффективность коагуляции и конденсации снижается с увеличением размера частиц. Таким образом, частицы имеют тенденцию «накапливаться» от 0,1 до 1 мкм , так называемый диапазон накопления.

Частицы размером менее микрометра могут быть получены путем конденсации металлов или органических соединений, которые испаряются в процессах высокотемпературного горения. Они также могут быть получены путем конденсации газов, которые были преобразованы в атмосферных реакциях в вещества с низким давлением пара.

Например, диоксид серы окисляется в атмосфере с образованием серной кислоты (H2SO4 ), которая может быть нейтрализована NH3 с образованием сульфата аммония.

Частицы, образующиеся в результате промежуточных реакций газов в атмосфере, называются вторичными частицами. Вторичные сульфатные и нитратные частицы обычно являются доминирующим компонентом мелких частиц . При сжигании ископаемого топлива, такого как уголь, нефть или бензин, могут образовываться крупные частицы в результате выброса негорючих материалов (например летучей золы); мелкие частицы в результате конденсации материалов, испарившихся при сгорании, и вторичные частицы, образующиеся в результате атмосферных реакций оксидов серы и оксидов азота, первоначально выделяющихся в виде газов.

Как действует сила Архимеда

Поскольку сила Архимеда, действующая на тело, зависит от объёма его погружённой части и плотности среды, в которой оно находится, можно рассчитать, как поведёт себя то или иное тело в определённой жидкости или газе.

Если плотность тела меньше плотности жидкости или газа — оно будет плавать на поверхности.

Если плотности тела и жидкости или газа равны — тело будет находиться в безразличном равновесии в толще жидкости или газа.

Если плотность тела больше, чем плотность жидкости или газа, — оно уйдёт на дно. 

Сила Архимеда в жидкости: почему корабли не тонут

Корпус корабля заполнен воздухом, поэтому общая плотность судна оказывается меньше плотности воды, и сила Архимеда выталкивает его на поверхность. Но если корабль получит пробоину и пространство внутри заполнится водой, то общая плотность судна увеличится, и оно утонет. 

В подводных лодках существуют специальные резервуары, заполняемые водой или сжатым воздухом в зависимости от того, нужно ли уйти на глубину или подняться ближе к поверхности. Тот же самый принцип используют рыбы, наполняя воздухом специальный орган — плавательный пузырь. 

На тело, плотно прилегающее ко дну, выталкивающая сила не действует. Это учитывают при подъёме затонувших кораблей. Сначала судно слегка приподнимают, позволяя воде проникнуть под него. Тогда давление воды начинает действовать на корабль снизу. 

Но чтобы поднять корабль на поверхность, необходимо уменьшить его плотность. Разумеется, воздух в получившем пробоину корпусе не удержится. Поэтому его заполняют каким-нибудь лёгким веществом, например, шариками пенополистирола. 

Примечательно, что эта идея впервые пришла в голову не учёным, а авторам диснеевского комикса, в котором Дональд Дак таким образом поднимает со дна яхту Скруджа Макдака. Датский инженер Карл Кройер (Karl Krøyer), впервые применивший метод на практике, по собственному признанию вдохновлялся «Утиными историями».

‍Дональд Дак поднимает со дна яхту при помощи шариков для пинг-понга. Walt Disney Corporation, 1949‍

Сила Архимеда в газах: почему летают дирижабли

В воздухе архимедова сила действует так же, как в жидкости. Но поскольку плотность воздуха обычно намного меньше, чем плотность окружённых им предметов, выталкивающая сила оказывается ничтожно мала.

Впрочем, есть исключения. Воздушный шарик, наполненный гелием, стремится вверх именно потому, что плотность гелия ниже, чем плотность воздуха. А если наполнить шар обычным воздухом — он упадёт на землю. Плотность воздуха в нём будет такая же, как у воздуха снаружи, но более высокая плотность резины обеспечит падение шарика.

Этот принцип используется в аэростатах — воздушные шары и дирижабли наполняют гелием или горячим воздухом (чем горячее воздух, тем ниже его плотность), чтобы подняться, и снижают концентрацию гелия (или температуру воздуха), чтобы спуститься. На них действует та же выталкивающая сила, что и на подводные лодки. Именно поэтому перемещения на аэростатах называют воздухоплаванием.

Учите физику вместе с домашней онлайн-школой «Фоксфорда»! По промокоду PHYSICS72021 вы получите бесплатный доступ к курсу физики 7 класса, в котором изучается архимедова сила. 

Происхождение и эволюция атмосферы (по В.А. Вронскому и Г.В. Войткувичу)

Еще при первоначальном радиоактивном разогреве молодой Земли происходило выделение летучих веществ на поверхность, образовавших первичный океан и первичную атмосферу. Можно допустить, что первичная атмосфера нашей планеты по составу была близка к составу метеоритных и вулканических газов. В какой-то мере первичная атмосфера (содержание СО2 составляло 98%, аргона – 0,19%, азота – 1,5%) была аналогична атмосфере Венеры – планеты, которая по размерам наиболее близка к нашей планете.

Первичная атмосфера Земли имела восстановительный характер и была практически лишена свободного кислорода. Только незначительная его часть возникала в верхних слоях атмосферы в результате диссоциации молекул углекислого газа и воды. В настоящее время утвердилось общее мнение о том, что на определенном этапе развития Земли ее углекислая атмосфера перешла в азотно-кислородную. Однако остается неясным вопрос относительно времени и характера этого перехода – в какую эпоху истории биосферы произошел перелом, был ли он быстрым или постепенным.

В настоящее время получены данные о наличии свободного кислорода в докембрии. Присутствие высокоокисленных соединений железа в красных полосах железных руд докембрия свидетельствуют о наличии свободного кислорода. Увеличение его содержания в течение всей истории биосферы определялось путем построения соответствующих моделей различной степени достоверности (А.П. Виноградов, Г. Холленд, Дж. Уолкер, М. Шидловский и др.). По мнению А.П. Виноградова, состав атмосферы изменялся непрерывно и регулировался как процессами дегазации мантии, так и физико-химическими факторами, которые имели место на поверхности Земли, включая остывание и соответственно снижение температуры окружающей среды. Химическая эволюция атмосферы и гидросферы в прошлом была тесно связана в балансе их веществ.

В качестве основы для расчетов прошлого состава атмосферы принимается распространенность захороненного органического углерода, как прошедшего фотосинтетический этап в круговороте, связанный с высвобождением кислорода. При убывании дегазации мантии в течение геологической истории, общая масса осадочных горных пород постепенно приближалась к современной. При этом 4/5 углерода захоронялось в карбонатных породах, а 1/5 приходилась на органический углерод осадочных толщ. Исходя из этих предпосылок немецкий геохимик М. Шидловский рассчитал рост содержания свободного кислорода в течение геологической истории Земли. При этом было установлено, что примерно 39% всего кислорода, выделившегося при фотосинтезе, оказалось связанным в Fe2O3, 56% сосредоточилось в сульфатах SO42- и 5% непрерывно остается в свободном состоянии в атмосфере Земли.

В раннем докембрии практически весь освобожденный кислород быстро поглощался земной корой при окислении, а также вулканическими сернистыми газами первичной атмосферы. Вероятно, что процессы образования полосчатых железистых кварцитов (джеспелитов) в раннем и среднем докембрии привели к поглощению значительной части свободного кислорода от фотосинтеза древней биосферы. Закисное железо в докембрийских морях явилось главным поглотителем кислорода, когда фотосинтезирующие морские организмы поставляли свободный молекулярный кислород непосредственно в водную среду. После того, как докембрийские океаны очистились от растворенного железа, свободный кислород стал накапливаться в гидросфере и затем в атмосфере.

Новый этап в истории биосферы характеризовался тем, что в атмосфере 2000-1800 млн. лет назад отмечалось увеличение количества свободного кислорода. Поэтому окисление железа переместилось на поверхность древних континентов в область коры выветривания, что и привело к формированию мощных древних красноцветных толщ. Поступление двухвалентного железа в океан уменьшилось и соответственно снизилось поглощение свободного кислорода морской средой. Все большее количество свободного кислорода стало поступать в атмосферу, где устанавливалось его постоянное содержание. В общем балансе атмосферного кислорода возросла роль биохимических процессов живого вещества биосферы. Современный этап в истории кислорода атмосферы Земли наступил с появлением растительного покрова на континентах. Это привело к значительному увеличению его содержания по сравнению с древней атмосферой нашей планеты.

Литература

  1. Вронский В.А. Основы палеогеографии / В.А. Вронский, Г.В. Войткевич. — Ростов н/Д: изд-во «Феникс», 1997. — 576 с.
  2. Зубащенко Е.М. Региональная физическая география. Климаты Земли: учебно-методическое пособие. Часть 1. / Е.М. Зубащенко, В.И. Шмыков, А.Я. Немыкин, Н.В. Полякова. – Воронеж: ВГПУ, 2007. – 183 с.

Состав атмосферы, газы и другие вещества

Тропосфера состоит из воздуха, содержащего азот (78,08%), кислород (20,95%), аргон (0,93%) и углекислый газ (всего 0,04%). В воздухе содержится и испаряемая с Земли влага в виде пара, количество которого все время меняется. 

Стратосфера состоит преимущественно из озона, создающего защитный озоновый слой Земли. Образовался он из кислорода, который в процессе фотосинтеза выделяли растения и микроорганизмы с древних времен. В результате химической реакции кислород, поднявшись в стратосферу, превратился в озон. Процентное соотношение азота, кислорода, аргона и углекислого газа остается таким же, но сам воздух настолько разрежен, что вдыхаемого количества кислорода уже недостаточно для живых существ. Поскольку движения воздушных потоков между стратосферой и тропосферой практически не наблюдается, то объем водяных испарений здесь очень мал. Поэтому облака здесь образуются крайне редко.

В мезосфере, как и в двух предыдущих слоях, воздух состоит из тех же компонентов, но является еще более разреженным, чем в стратосфере. Характерной особенностью является наличие железа и некоторых других металлов, оставшихся в этом слое в результате сгорания метеоров.

В термосфере, в отличие от нижних слоев атмосферы, молекулы газа, в силу гораздо большой разреженности, не перемешиваются между собой, а равномерно распределены и практически лишены возможности сталкиваться друг с другом. Солнечное излучение приводит к их разрушению, поэтому в верхних слоях можно наблюдать не молекулярные азот, кислород, а их атомы вместе с атомами гелия.

Экзосфера состоит большей частью из атомов водорода, а также отдельных атомов кислорода, азота, гелия, ионизированных солнечными лучами.

Состав воздуха

  1. Азот. Он преобладает среди химических элементов в составе воздуха. Содержание этого газа в атмосфере достигает 78 % от общего объема и 75 % от общей массы. Также азот есть на Нептуне и Уране.
  2. Кислород. Этот газ составляет 21 % по объему и 23 % по массе воздуха. В сочетании с азотом кислород образуют 99 % всей земной атмосферы. Благодаря такому процентному соотношению этих двух газов, живые существа могут дышать.
  3. Аргон. Третье место по количеству содержания в воздухе составляет аргон (0,9 процента), не имеющий ни вкуса, ни запаха, ни цвета. Значение этого газа с точки зрения биологии не установлено. Известно, что аргон является веществом, вызывающим зависимость, допингом.
  4. Углекислый газ. Доля углекислого газа в составе земного воздуха равна 0,03 %. Этот газ выделяется при выдохе и является продуктом выброса при промышленной деятельности. Двуокись углерода применяется в тушении пожаров и в качестве пищевой добавки Е290. В твердом состоянии этот газ известен как хладагент «сухой лед». Углекислый газ имеется в составе атмосферы Марса и Венеры.
  5. Метан. Воздух на 0,002 % состоит из метана. Он выделяется из недр планеты и используется как топливо и производственное сырье.
  6. Неон. Инертный газ, действующий на живой организм как наркотическое средство, занимает 0,001818 % от общего объема земного воздуха. Неон применяют в подготовке специалистов, работающих при повышенном давлении, к примеру, водолазов.
  7. Гелий. Содержание гелия в атмосфере Земли — 0,000524 %. Он не является первостепенно важным. Биологическая роль гелия не определена. Применение этого газа распространено в воздушных шарах.
  8. Криптон. Количество данного инертного газа в воздухе составляет 0,000114 %. Криптон, по сравнению с воздухом, тяжелее втрое. Этот газ получил применение в лазерах и лампах накаливания. Криптон может оказывать эффект наркотиков при условии атмосферного давления в 3,5. Если давление достигает 6 атмосфер, то рассматриваемый газ приобретает резкий неприятных запах.
  9. Водород. 0,00008% массы и 0,00005% объема воздуха занимает водород. Это наиболее распространенный элемент нашей планеты.
  10. Ксенон. Доля ксенона в составе земной атмосферы — 0,00008 %. Этот газ выделяется из почвы в очень малых количествах. При помощи технологий, его собирают, очищают и используют в медицинских целях в виде ингаляций.

Стратосфера: дом озона

Стратосфера – следующий слой атмосферы. Он простирается от 6-20 км до 50 км над земной поверхностью Земли. Это слой, в котором летают большинство коммерческих авиалайнеров и путешествуют воздушные шары.

Здесь воздух не течет вверх и вниз, а движется параллельно поверхности в очень быстрых воздушных потоках. По мере того, как вы поднимаетесь, температура увеличивается, благодаря обилию природного озона (O3) – побочного продукта солнечной радиации и кислорода, который обладает способностью поглощать вредные ультрафиолетовые лучи солнца (любое повышение температуры с высотой в метеорологии, известно как “инверсия”).

Поскольку стратосфера имеет более теплые температуры внизу и более прохладные наверху, конвекция (вертикальные перемещения воздушных масс) встречается редко в этой части атмосферы. Фактически, вы можете рассматривать из стратосферы бушующую в тропосфере бурю, поскольку слой действует как «колпачок» для конвекции, через который не проникают штормовые облака.

После стратосферы снова следует буферный слой, на этот раз называемый стратопаузой.

Термосфера и экзосфера

Общая высота атмосферы Земли составляет около 100 км. На этом уровне проходит условная граница, отделяющая планету от космоса. Её называют линией Кармана. На высоте более 100 км есть газы, но их количество ничтожно мало. Полёты на таком расстоянии от поверхности относятся к космическим.

Линия Кармана одновременно является нижней границей термосферы — самого протяжённого воздушного слоя. Эта часть атмосферной оболочки простирается до высоты 800 км над уровнем моря. Температура здесь достигает 1800 градусов. Насколько это много, можно понять, если вспомнить, что железо плавится уже при 1538 °C.

Однако космические аппараты в термосфере не разрушаются, потому что содержание газов в нем низкое. Отдельные частицы обладают огромной энергией, но они находятся на большом расстоянии друг от друга. Летательные аппараты находятся в вакууме. При этом возникает необходимость отводить избыточное тепло, которое выделяется при работе двигателей и других механизмов. Тепловыделение достигается за счёт работы радиаторов. Ими оснащают все космические корабли.

Экзосфера — последний атмосферный слой, нижняя граница которого проходит на высоте 700−800 км. Эта часть оболочки очень разреженная и состоит в основном из атомов водорода. В малом количестве присутствуют ионы азота и кислорода (менее сотых долей процента).

Физические характеристики тропосферы

Каждый из основных слоёв обладает особыми характеристиками. Тропосфера — самая плотная оболочка, первая по счёту от поверхности планеты. На полюсах она распространяется на 7 км от поверхности, а у экватора — на 20 км. Разница обусловлена тем, что планета не круглая, а немного сплющенная, так как на неё воздействует центробежная сила. Чем теплее воздух, тем больше размер тропосферы.

Этот слой — наиболее продуктивный и динамичный. В нём формируются тучи, образуются ветра, циклоны и антициклоны. В тропосфере обитает большая часть видов, образующих живую природу. Температура воздуха в этой части оболочки понижается на 0,5−0,7 градуса с увеличением высоты на каждые 100 метров. Скорость ветра изменяется на 2−3 км/с на 1 км высоты.

В тропопаузе температура остаётся неизменной. Нижняя часть тропосферы примыкает к литосфере и образует приграничный слой. Его роль заключается в аккумуляции и передача тепла на высоту. Водообмен также происходит в приграничном слое. В течение 8−12 дней совершается полный оборот воды. Таким образом, тропосфера играет роль огромного фильтра.

Единый состав до высоты 90 километров

Кроме того, здесь можно найти пыль, капельки воды, водяной пар, продукты горения, кристаллики льда, морские соли, множество аэрозольных частиц и др. Такой состав атмосферы Земли наблюдается приблизительно до девяноста километров высоты, поэтому воздух примерно одинаков по химическому составу, не только в тропосфере, но и в вышележащих слоях. Но там атмосфера имеет принципиально другие физические свойства. Слой же, который имеет общий химический состав, называют гомосферой.

Какие элементы еще входят в состав атмосферы Земли? В процентах (по объему, в сухом воздухе) здесь представлены такие газы как криптон (около 1.14 х 10-4), ксенон (8.7 х 10-7), водород (5.0 х 10-5), метан (около 1.7 х 10-4), закись азота (5.0 х 10-5) и др. В процентах по массе из перечисленных компонентов больше всего закиси азота и водорода, далее следует гелий, криптон и пр.

https://youtube.com/watch?v=oXydLraBv_c

https://youtube.com/watch?v=QwLisS38AZY

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Дружный центр
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: