Круговорот кислорода в природе: кратко и понятно

Значение круговорота кислорода в природе

Был в истории Земли такой период, когда кислорода в атмосфере не было. Около 2,45 миллиардов лет тому назад атмосфера состояла из углекислого газа, метана, аммиака и сероводорода. И сравнительно молодая биосфера Земли в тот период была анаэробной, а аэробные живые существа, и прежде всего, цианобактерии, ещё не были широко распространены. Фотосинтез уже тогда существовал, но он был аноксигенным, то есть, кислород существовавшие тогда существа выделять не могли.

Однако впоследствии произошло то, что учёные назвали “кислородной катастрофой”: атмосфера оказалась заполненной кислородом (в том числе в свободной форме), и в биосфере стали доминировать аэробные существа, способные дышать кислородом, а анаэробная биосфера оказалась оттеснена в среду, куда кислород не мог проникнуть. И так много свободного кислорода выделилось после того, как кислород на тот момент закончил окислять горные породы, растворённые соединения и газы в атмосфере.

С тех пор биосфера стала преимущественно аэробного характера. Если бы “кислородная катастрофа” 2,45 миллиарда лет тому назад не произошла, жизнь была бы совсем другой, и если бы развилась цивилизация, она так же была бы совершенно не похожей на нынешнюю.

А между тем, биосфера на Земле привыкла к кислородному дыханию, важному и для жизнедеятельности отдельных клеток, и для жизни всех живых организмов, от бактерий до людей, от планктона до животных. Фотосинтез позволяет возобновлять расходуемый при дыхании, при гниении, при горении кислород, и отсутствие способных к фотосинтезу живых существ неизбежно изменит атмосферу и полностью перестроит биосферу

На это тоже могут уйти миллионы, а то и миллиарды лет.

Не стоит также забывать об озоновом слое. Он выполняет невероятно важную для Земли функцию. А именно: озон поглощает опасную для биосферы солнечную радиацию. Именно благодаря озоновому слою на Земле установлены комфортные солнечные условия, пригодные в том числе и для фотосинтеза растений.

Чрезмерное количество ультрафиолетовых лучей на Землю просто не попадает. Учёные считают, что отсутствие озонового слоя не позволило бы живым существам выйти из океана на сушу, они бы просто сгорели бы под сильным потоком солнечной радиации. Озон позволяет осуществляться круговороту кислорода как таковому, позволяет жизни на Земле существовать и дальше. И именно поэтому появление так называемых озоновых дыр в XX веке сильно перепугало человечество.

Круговорот кислорода в природе

Задания «С» ЕГЭ_ 2007 г. – С 4

В чем выражается приспособленность цветковых растений к совместному проживанию в лесном сообществе? Укажите не менее 3-х примеров.

1) ярусное расположение, обеспечивающее использование растениями света;

2) неодновременное цветение ветроопыляемых и насекомоопыляемых растений;

3) различные формы отношений между растениями и другими организмами (симбиоз, паразитизм, конкуренция и др.).

Назовите не менее 3-х отличий в строении клеток прокариот и эукариот.

1) ядерное вещество не отделено от цитоплазмы оболочкой;

2) одна кольцевая молекула ДНК – нуклеоид;

3) отсутствует большинство органоидов, кроме рибосом.

К каким изменениям в экосистеме луга может привести сокращение численности насекомых-опылителей?

1) сокращению численности насекомоопыляемых растений, изменению видового состава растений;

2) сокращению численности и изменению видового состава растительноядных животных;

3) сокращению численности насекомоядных животных.

К каким последствиям могут привести различные виды антропогенного воздействия на окружающую среду?

Приведите не менее 4-х последствий.

1) сжигание топлива приводит к накоплению в атмосфере СО 2 и парниковому эффекту;

2) работа промышленных предприятий способствует загрязнению окружающей среды твердыми отходами (пылевые частицы), газообразными продуктами (оксидами азота и др.), что вызывает кислотные дожди;

3) использование фреонов приводит к образованию озоновых дыр и проникновению ультрафиолетовых лучей, губительно влияющих на всё живое;

4) вырубка лесов, осушение болот, распашка целинных земель приводят к опустыниванию.

В последние годы благодаря достижениям биотехнологии появился новый источник пищи – белок, получаемый из микроорганизмов.

Какие преимущества имеет использование микроорганизмов для производства белка по сравнению с традиционным использованием для этой цели сельскохозяйственных растений и животных?

1) не требуется больших площадей для посевов и помещений для скота, что снижает энергозатраты;

2) микроорганизмы выращивают на дешевых или побочных продуктах сельского хозяйства или промышленности;

3) с помощью микроорганизмов можно получить белки с заданными свойствами (например, кормовые белки).

Современные кистеперые рыбы находятся в состоянии биологического регресса.

Приведите данные, подтверждающие это явление.

1) невысокая численность вида: в настоящее время известен только один вид этих рыб – латимерия;

2) небольшая площадь ареала: латимерия имеет ограниченное распространение в участке Индийского океана;

3) латимерия приспособлена к жизни только на определённой глубине, т.е

Ассимиляция

Указанная ранее денитрификация является диссимиляционным процессом восстановления нитрата, но она может осуществляться ассимиляционным путём. Иначе говоря, ассимиляция тоже является денитрификацией, но иного толка. Ассимиляция связана с жизнедеятельностью растений, части грибов и прокариотов, способных существовать в нитратных средах. Этот процесс всегда требует энергии.

Аммоний и нитраты из почвы, которые поглощают микробные и бактериальные клетки, на время выпадают из процесса круговорота азота, будучи включёнными в особые полимеры клеток, и за это время неорганические азотистые вещества становятся органическими, когда они включаются в состав молекул клеток растений. Под влиянием фермента нитратредуктазы нитрат становится нитритом, а под действием другого фермента, нитритредуктазы, нитрит становится аммиаком, который является составляющей аминокислот, и после этого азот может вернуться в атмосферу.

Геохимический цикл углерода

Геохимический цикл углерода по своей сути – это схема, отражающее то количество углерода, который циркулирует между слоями: атмосферой, геосферой и гидросферой. Замеры производятся в течение года и составляют миллиарды тонн. При это данный показатель еще включает и те 5,5 гигатонн, которые попадают в атмосферу при сжигании человеком ископаемого топлива.

По факту – геохимический цикл углерода представляет собой совокупность процессов по переносу углевода из одного так называемого геохимического резервуара в другой. Стоит отметить, что главную роль в этом процессе играют живые организмы.

Важно знать, что геохимический цикл углерода обладает рядом особенностей:

  • Он всегда происходит сквозь гидросферу и атмосферу и поэтому серьезно влияет на все процессы в окружающей среде, и в первую очередь, на представителей биосферы;
  • На протяжении становления и развития планеты происходящие катастрофические изменения значительно влияли на эволюцию цикла.

На данный момент самым изученным является четвертичный период геохимического цикла. В нем происходили те изменения, которые напрямую связаны с климатическими. Именно поэтому ученым намного проще отследить этот период, так как он четко зафиксирован вечной мерзлотой Арктики и Антарктиды.

Как идет процесс в биосфере

Оболочка соединяет все известные сферы присутствием жизни. В ней постоянно идут обменные процессы. Химические реакции, превращение энергии поддерживают существование живых существ. Круговорот углерода в биосфере самый значительный и масштабный.

Газообмен гидросферы с атмосферой

Гидросфера обменивается углекислотой с воздушной оболочкой Земли. Не весь растворенный газ возвращается обратно. Часть усваивают бактерии верхних слоев. Ими питаются микроорганизмы. Создается пищевая цепочка. Элемент переходит из неорганического состояния в органическое.

Умершие живые существа опускаются на дно. Под давлением воды отложения спрессовываются. Глубинные микроорганизмы и бактерии перерабатывают ил.

Они влияют на круговорот элемента. Образуются полезные ископаемые: газ, нефть, уголь. Углерод перешел из органического состояния в неорганическое. В таком виде он сохраняется миллионы лет.

В верхних слоях содержится больше растворенного кислорода. В нижних – диоксида элемента и азота. Баланс неустойчив. При повышении температуры концентрация газов меняется. При изменении видового состава бактерий и микроорганизмов происходит перемещение кислорода вниз, азота и СО2 вверх. Газообмен с воздушной оболочкой нарушается.

Движение углерода в литосфере

Диоксид вещества через мелкие поры попадает в почву. Часть его растворяется водой или испаряется. Другая перерабатывается аэробными бактериями. Плодородный слой обогащается. В благоприятной среде развиваются растения. После отмирания гумус обогащается вновь. Наблюдается бесконечный переход: неорганика – органика – неорганика.

Слои утолщаются, уплотняются. Со временем под действием внешних факторов образуются осадочные полезные ископаемые. В их состав входит данное вещество. Нефть, газ, все виды угля, торф, известняк, мел надолго консервируют элемент в неорганическом состоянии.

Важно! Элемент в составе полезных ископаемых в круговороте временно не участвует! Цикл углерода не бывает абсолютно замкнутым

Фотосинтез: особая часть большого кругооборота

Этот процесс по мощности соизмерим с ядерной реакцией. Более совершенного и экономного механизма производства соединений не существует.

Фотосинтез – часть круговорота элемента в биосфере. Он превращает неорганические вещества в органические. Насыщение атмосферы освобожденным кислородом регулирует газовый баланс. В результате этого процесса образуются питательные вещества: сахар, крахмал. Растения потребляют то, что сами производят.

Фотосинтез имеет две фазы: световую и темновую. Под воздействием солнечной энергии во время первой стадии происходит накопление клетками углекислого газа и воды. На этом этапе от молекулы воды отщепляется кислород. Происходит выделение газа в атмосферу.

Темновая стадия происходит без доступа солнечных лучей. Углекислота связывается. Дополнительными продуктами являются органические соединения (углеводы). Углекислый газ в природе одновременно является строительным материалом, а также источником питания, оздоравливающим планету веществом.

Вода

В биосфере нет более распространенного вещества. Его запасы в основном в солено-горьком виде вод морей и океанов – это около 97%. Остальное пресные воды, ледники и подземные и грунтовые воды.

Круговорот воды в биосфере условно начинается с ее испарения с поверхности водоемов и листьев растений и составляет примерно 500 000 куб. км. Обратно она возвращается в виде осадков, которые попадают либо непосредственно обратно в водоемы, либо, пройдя через почву и подземные воды.

Роль воды в биосфере и истории ее эволюции такова, что вся жизнь с момента своего появления, была полностью зависима от воды. В биосфере вода многократно через живые организмы прошла циклы разложения и рождения.

Кругооборот воды имеет под собой в большей степени физический процесс

Однако, животный и, особенно, растительный мир принимает в этом немаловажное участие. Испарения воды с поверхностных участков листьев деревьев таков, что, например, гектар леса испаряет в сутки до 50 тонн воды

Если испарение воды с поверхностей водоемов естественно для ее кругооборота, то для континентов с их лесными зонами, такой процесс – единственный и главный способ его сохранения. Здесь кругооборот идет как бы в замкнутом цикле. Осадки образуются из испарений с поверхностей почвы и растений.

В процессе фотосинтеза растения используют водород, содержащийся в молекуле воды, для создания нового органического соединения и выделения кислорода. И, наоборот, в процессе дыхания, живые организмы, происходит процесс окисления и вода образуется снова.

Описывая кругооборот различный видов химических веществ, мы сталкиваемся с более активным влиянием человека на эти процессы. В настоящее время природа, за счет многомиллиардной истории своего выживания, справляется с регулированием и восстановлением нарушенных балансов. Но первые симптомы «болезни» уже есть. И это «парниковый эффект». Когда две энергии: солнечная и отраженная Землей, не защищают живые организмы, а, наоборот, усиливают одна другую. В результате чего повышается температура окружающей среды. Какие последствия такого повышения могут быть, кроме ускоренного таяния ледников, испарения воды с поверхностей океана, суши и растений?

Значение углерода в жизнедеятельности живой природы

Особое значение углерод в природе имеет не просто так: уникальные свойства серьезно выделяют его на фоне других химических элементов системы. Углерод образует прочные химические связи как внутри себя (между собственными атомами), так и с другими элементами. Но несмотря на свою прочность, эти связи могут быть достаточно просто разорваны во вполне мягких условиях. В природе существует конкретная экономичность благодаря углероду: с помощью углерода и некоторого количества типов его связей производится сокращение ферментов, участвующих в расщеплении и синтезе органики. Важным также является то, что углерод – один из трех элементов (вместе с кислородом и водородом), которые составляют не больше, не меньше, чем 98 % всей массы живого на Земле.

В рамках гипотезы А.И. Опарина, принятой научным сообществом, предполагается, что самые первые органические соединения на нашей планете произошли абиогенным образом. Первичными источниками углерода были такие соединения, как HCN (цианистый водород) и CH4 (метан).

Именно эти вещества в основном содержались в атмосфере Земли начала времен. На данный момент углерод (в соединении СО2) отлично ассимилируется посредством фотосинтеза – сложного процесса, происходящего в клетках зеленых растений. Животные же в большинстве потребляют углерод в форме уже готовых органических соединений.

Самое распространенное соединение углерода – его двуокись (СО2). Будучи растворенной практически во всех жидкостях (в частности – и в воде) на Земле, двуокись углерода выполняет важную функцию поддержания кислотной среды. А такое соединение как, например, CaCO3 является основным в составе раковин и внешних покрытий беспозвоночных или в скорлупе яиц.

Нитрификация и денитрификация

Под Нитрификацией понимают процессы окисления аммиака до нитритов и нитратов. Процесс идет в две фазы. Возбудителями фаз являются последовательно: I фаза: возбудители бактерии рода Nitrosomonas : имеют овальную, иногда кокковидную форму. Размеры 1,5-3 мкм. Подвижны монотрихи (или лофотрихи), спор не образуют. Окисляют аммиак до нитритов по реакции:

2NH3 + 3O2 2HNO2 + 2H2O + Энергия

II фаза — возбудители бактерии рода Nitrobacter — мелкие тонкие палочки (0,5 х 1 мкм). Клетки подвижные (монотрихи) или неподвижные. Часто в колонии наблюдается полиморфизм (клетки различной формы). Для нитробактерий характерно размножение почкованием.

2NH O2 + O2 2HNO3 + Энергия

Энергию бактерии используют для ассимиляции углекислого газа.

Микроорганизмы-нитрификаторы являются хемоавтотрофами, облигатными аэробами, аминоавтотрофами.

В природе, являясь автотрофами участвуют в накоплении первичного органического вещества. Почвообразователи. Приняли участие в образовании залежей природной селитры (например, в пустыне Атакама в Чили).

Количество нитратов в почве — показатель плодородия. Однако нитраты легко вымываются из почвы, поэтому чересчур высокая нитрифицирующая способность почвы может привести к потерям больших количеств доступного азота.

Денитрификация. В этом процессе происходит восстановление нитратов до молекулярного азота.

Возбудители — Бактерии вида Paracoccus Denitrificans.

Химизм: восстановление нитратов происходит по диссимиляционному типу:

+ +

NO3 NO2 N2

H2O H2O

Ключевые ферменты процесса : нитратредуктаза, нитритредуктаза

Биологический смысл: использование кислорода нитратов в качестве акцептора водорода при окислении углеводов (анаэробное нитратное дыхание).

Возбудители процесса денитрификации гетеротрофы, аминоавтотрофы, факультативные анаэробы.

Роль процесса в природе весьма двусмысленна. С одной стороны в результате процесса происходит потеря доступных форм азота из почвы. С другой стороны, возбудители процесса выделяют в зону корней различные биологически активные вещества, вызывая стимуляцию роста корней.

Углерод в ископаемом топливе и деревьях

Некоторое количество углерода в нашем мире находится в подвешенном состоянии сотни или даже миллионы лет. Углерод задерживается в ископаемом топливе, таком как уголь и нефть. Ископаемое топливо состоит из трансформированных останков живых организмов и содержит много энергии. Мы сжигаем ископаемое топливо для получения энергии, и в этом процессе углерод возвращается в атмосферу в форме CO2.

Еще одно место, где углерод задерживается на долгое время — это деревья. Поскольку деревья живут очень долго, углерод не циркулирует, пока дерево не умрет или не сгорит. Затем CO2 выпускается обратно в атмосферу, и цикл продолжается, поскольку этот углерод снова используется растениями для создания пищи.

Круговорот элемента в природе

Все соединения в окружающей среде можно разделить на живые (органические) и мертвые (неорганические). К первой группе принадлежат вещества биологического происхождения, например, липиды, протеины

В состав их структуры входит ряд микроэлементов, имеющих важное значение для живого организма. Неорганические соединения образуются в результате химических реакций

К их числу принадлежат газы, соли, металлы и т.д.

Кратко схема круговорота углерода в природе можно описать следующим образом:

Водная среда, атмосфера и суша заполнены неорганическими соединениями, которые попадают в пищеварительную систему простейших существ.
Последние активно поглощаются высшими животными.
После гибели простейших организмов их останки снова перерабатываются до состояния металлов и солей.

Это общее описание принципа оборота углекислого газа (СО2) в природе, приведенного на рисунке.

Дыхательный обмен

Углекислый газ присутствует в воздухе, земле и воде. Он образуется вследствие дыхания живых существ, горения, а также гниения. Растения обладают способностью усваивать углерод, входящий в состав СО2. После этого они перерабатывают его в органические соединения. Этот процесс называется фотосинтезом, а протекает он в листьях.

Деятельность микроорганизмов

Простейшие организмы являются началом и концом любой пищевой цепи. Именно благодаря их работе растения и животные получают необходимую для жизни энергию. Погибшие представители флоры и фауны оказываются в структуре почвы и морского дна. После этого в работу включаются микроорганизмы, перерабатывающие их плоть в простые химические соединения. Этот процесс сопровождается выделением CO2.

В результате образуются питательные ресурсы, необходимые для жизни растений и животных, а круговорот элементов начинается с самого начала. При этом некоторым простейшим для расщепления мертвой структуры не требуется кислород. Например, в воде обитают анаэробные бактерии. Они обладают способностью производить сернистое черное железо. Именно это вещество придает болотам и рекам характерный цвет.

Частью углеродного цикла является симбиоз, представляющий собой выгодное взаимодействие двух организмов. Не все животные способны расщеплять сложную растительную клетчатку. Однако в их желудках обитают бактерии, расщепляющие целлюлозу на простые элементы, которые легко усваиваются организмом парнокопытных. Можно привести много примеров такого сотрудничества.

Углерод в воде и на суше

Атмосфера содержит около 30 % всего углерода планеты. Этого количества элемента достаточно для растений, являющихся главным элементом пищевой цепи высших животных. Благодаря фотосинтезу флора получает требуемую для роста энергию из углерода. Травоядные животные употребляют растения, обеспечивая себя пищей. В свою очередь, хищные представители фауны поедают слабейших травоядных.

Взаимодействие элементов в водной среде является более сложным процессом. Углекислый газ сначала должен раствориться в воде. Только после этого он может быть переработан планктоном. Эти микроорганизмы обитают в верхних слоях воды и находятся в начале пищевой цепи.

Роль людей

Человек уже давно стремится перестроить окружающую среду под свои нужды. К сожалению, это оказывает негативное влияние на природу. Злоупотребление ресурсами приводит к следующим отрицательным последствиям:

  • быстро уменьшается количество растений, в первую очередь деревьев, что приводит к увеличению содержания углекислого газа в атмосфере;
  • фабрики и заводы сжигают ископаемые ресурсы, вызывая тем самым дисбаланс химических элементов.

Активная деятельность человека привела к появлению глобального потепления. Из-за большого количества парниковых газов в атмосфере, процесс отдачи инфракрасного излучения планетой в космическое пространство замедлился. В результате наблюдается таяние льдов на полюсах, что привело к увеличению уровня Мирового океана и гибели некоторых представителей биосферы.

Влияние человека на круговорот

Деятельность людей имеет непосредственное отношение к этому. Промышленность является самым интенсивным вмешательством в этот процесс. Главным источником распространения лишнего объёма газа в атмосфере считается сельское хозяйство. Выращиваемые культуры поглощают множество питательных веществ, тем самым обедняя её. Картофель, свёкла, зерновые, каждый год потребляют до 200 кг вещества с одного гектара земли.

Если применение органических удобрений недостаточно или полностью отсутствуют бобовые растения, то при исчерпании резервных сил и вымывании полезных элементов из почвы ухудшается ее состояние и плодородие. И наоборот. Чрезмерное накопление удобрений приводит к увеличению количества вещества для наземных растений и уменьшению свободного азота, попадающего в атмосферу.

Заключение

Как происходит круговорот азота в природе? Схема этого движения может быть представлена наглядно. Например, можно вообразить, что вся биосфера представляет собой две сообщающиеся между собой емкости. Большая ёмкость представляет собой нахождение азота в природе главным образом в гидросфере и атмосфере. Очень маленькая содержит азот, который является частью жизнедеятельности. Узкий проход соединяет обе ёмкости, в нем азот тем или иным образом переходит в связанное состояние. В естественной среде именно через такие проходы азот попадает в живые организмы и становится частью неживой природы после своей гибели.

За сравнительно короткий период времени деятельность человека стала влиять на уровень N2 в естественной среде. Роль азота в природе до конца еще не изучена. Уже сейчас ясно, что каждая экологическая система способна усвоить лишь определенное количество этого вещества. Излишек азота в любой экосистеме приводит к чрезмерному росту растений, засоренности рек и водоемов.

Дальнейшее изучение круговорота азота в природе поможет предотвратить последствия таких проблем и соблюсти баланс между хозяйственной деятельностью человека и природными экосистемами.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Дружный центр
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: