Гомологичная хромосома — homologous chromosome

Строение прокариотической клетки

Прокариоты являются организмами, состоящими из одной клетки, в которой нету ядра. К таким относятся только бактерии. Большинство из них имеют одинарный набор хромосом.

Структура их клетки отличается от эукариотической тем, что в ней отсутствуют некоторые органоиды. К примеру, в них нет митохондрий, лизосом, комплекса Гольджи, вакуолей, эндоплазматической сети. Однако, как и эукариотическая, гаплоидная клетка прокариотов обладает плазматической мембраной, состоящей из белков и фосфолипидов; рибосомами, которые участвуют в выработке белков; клеточной стенкой, которая в большинстве случаев построена из муреина. Также в строении такой клетки может присутствовать капсула, в состав которой входят такие вещества, как белки и глюкоза. Их хромосомы свободно плавают в цитоплазме, не защищены ядром или какой-либо другой структурой. Чаще всего наследственный материал бактерий представлен лишь одной хромосомой, на которой записана информация о белках, которые должны продуцироваться клеткой. Способ размножения таких организмов — простое деление гаплоидных клеток. Это позволяет им в кратчайшие сроки заметно увеличить свою численность.

Как грамотно оформлять решение?

Если это задача на биосинтез белка, нам необходимо:

  1. Найти, что нам дано в задаче
  2. Определить молекулу, которую нужно найти
  3. Определить, есть ли специальные условия
  4. Оформить решение по формуле

Пример

Фрагмент начала гена имеет следующую последовательность нуклеотидов (верхняя цепь — смысловая, нижняя — транскрибируемая):
5′ — T A A T Г Ц Ц Ц Г Ц A T A T A T Ц Ц A T — 3′
3′ — А Т Т А Ц Г Г Г Ц Г Т А Т А Т А Г Г Т А — 5′

Ген содержит информативную и неинформативную части для трансляции. Информативная часть гена начинается с триплета, кодирующего аминокислоту МЕТ. С какого нуклеотида начинается информативная часть гена? Определите последовательность аминокислот во фрагменте полипептидной цепи. Ответ поясните. Для выполнения задания используйте таблицу генетического кода.

Дано: ДНК (транскрибируемая): 3’ — А Т Т А Ц Г Г Г Ц Г Т А Т А Т А Г Г Т А — 5 ’

Найти: нуклеотид, с которого начинается информативная часть гена, последовательность аминокислот во фрагменте молекулы белка

Специальные условия: информативная часть гена начинается с триплета, кодирующего аминокислоту МЕТ.

Как оформлять решение? Формула для одного пункта ответа

Решение

  1. Странскрибируемой цепи ДНК находим молекулу иРНК по принципу комплементарности:
    иРНК: 5′ — УААУГЦЦЦГЦАУАУАУЦЦАУ- 3′
  2. Информативная часть гена начинается с третьего нуклеотида Т на ДНК, так как аминокислота МЕТ кодируется кодоном АУГ на иРНК

  3. С молекулы иРНК находим последовательность аминокислот в белке по таблице генетического кода:
    Последовательность аминокислот: мет — про — ала — тир — иле — гис

Если это задача на хромосомный набор клетки и его изменения во время деления клетки:

  1. Найти, что нам дано в задаче
  2. Определить, что от нас требуют найти
  3. Определить, есть ли специальные условия (например, дано ли нам конкретное число хромосом)
  4. Оформить решение по формуле

Пример

Хромосомный набор в клетках корешка риса посевного равен 24. Определите хромосомный набор и число молекул ДНК в одной из клеток риса посевного в интерфазе и в анафазе мейоза 1, а также перед началом второго деления мейоза. Объясните, какие процессы происходят в эти периоды и как они влияют на изменение числа ДНК и хромосом.·

Дано: диплоидный хромосомный набор соматической клетки 2n – 24 хромосомы, деление в задаче — мейоз

Найти: хромосомный набор в интерфазе мейоза,в анафазе мейоза 1, перед началом второго деления, объяснить процессы на этих стадиях

Как оформлять решение?

Решение

  1. хромосомный набор в интерфазе мейоза – 2n4c (24 хромосомы, 48 ДНК) – диплоидный, так как в интерфазе происходит репликация ДНК и хромосомы становятся двухроматидными, соединенными в области центромеры
  2. хромосомный набор в анафазе мейоза 1 – 2n4c (у каждого полюса 1n2c) (24 хромосомы, 48 ДНК. у каждого полюса 12 хромосом и 24 ДНК) – диплоидный, так как происходит редукция числа хромосом: нити веретена деления укорачиваются и гомологичные хромосомы (состоящие из двух хроматид), растягиваются к полюсам клетки. У полюсов образуются гаплоидные наборы хромосом

  3. хромосомный набор перед началом второго деления – 1n2c (12 хромосом и 24 ДНК) – гаплоидный, так как произошла редукция числа хромосом в анафазу мейоза 1

Если это задача на изменения хромосомного набора в процессе жизненного цикла растений необходимо:

  1. Найти, что нам дано в задаче
  2. Определить, что от нас требуют найти
  3. Оформить решение по формуле

Пример

У хламидомонады преобладающим поколением является гаметофит. Определите хромосомный набор взрослого организма и его гамет. Объясните из каких исходных клеток образуются взрослые особи и их гаметы, в результате какого деления формируются половые клетки.

Дано: деление в задаче – мейоз, растение — водоросль хламидомонада

Найти: хромосомный набор взрослого организма, спор + описать каким делением и из каких исходных клеток они образуются, хромосомный набор гамет + описать каким делением и из каких исходных клеток они образуются

Как оформлять решение?

Решение

  1. хромосомный набор взрослого организма — n (гаплоидный)
  2. хромосомный набор споры — n (гаплоидный), споры (зооспоры) образуются из диплоидной зиготы путём мейоза

  3. хромосомный набор гамет — n (гаплоидный), гаметы образуются из клетки взрослого организма (гаметофита) путём митоза

Состав хромосом. ДНК

Хромосомы представляют собой структуры, состоящие из сложного комплекса ДНК, РНК и белков. Такой комплекс называется .

Если вначале секвенирование было трудоемким процессом, который позволял за раз «прочитать» лишь небольшой фрагмент, то по мере развития технологии стало возможным определить, например, полную последовательность митохондриальной ДНК человека (1981 год). В 1990 году был запущен амбициозный проект с целью полного секвенирования человеческого генома, а первый результат был представлен в 2001 году (биомолекула: «Геном человека: как это было и как это будет»). При этом секвенирование одного генома обошлось в колоссальную сумму — сотни миллионов долларов. Но технологии не стоят на месте, и появление новых методов позволило снизить затраты в тысячи раз*. Теперь секвенирование целого генома стало рядовым событием, и в 2009 году был запущен проект «Genome 10K». Его цель — это секвенирование и полная «сборка» в хромосомы 10 тысяч геномов животных.

* — «Закон» Мура прямо таки обречен на достижение конечных точек в разных науках (куда только его удалось притянуть). Биология даже обогнала электронику: постепенное падение стоимости секвенирования в 2007-м ушло в крутое пике, приближая эру рутинного чтения геномов в сельских фельдшерских пунктах по полисам ОМС. Правда, в обозримой перспективе всё же придется раскошелиться — долларов на 1000 плюс транспортные расходы: «Технология: 1,000 $ за геном». Но и о таком могли лишь мечтать до появления новых методов секвенирования ДНК: «454-секвенирование (высокопроизводительное пиросеквенирование ДНК)». И для понимания базовых (на уровне клетки) процессов развития организма и победы над онкозаболеваниями мечтать есть еще о чём: «Секвенирование единичных клеток (версия — Metazoa)» — Ред.

Эволюция хромосом и геномов

* — На биомолекуле можно найти внушительную подборку статей, так или иначе затрагивающих эволюцию геномов и изменения генетического кода: «Вирусные геномы в системе эволюции», «Под „генную гармошку“», «Аллополиплоидия, или как разные геномы научились жить под одной крышей», «Полные геномы галапагосских вьюрков наконец-то раскрыли механизмы их эволюции», «Как составлялся геном эукариот: эндосимбиоз VS. непрерывный горизонтальный перенос»; «Таинственный код нашего генома», «Эволюция генетического кода», «У истоков генетического кода: родственные души», «Такие разные синонимы» и др. — Ред.

Митоз и мейоз в эволюции

Обычно мутации в ДНК соматических клеток, которые подвергаются митозу, не передаются потомству и поэтому не применимы к естественному отбору и не способствуют эволюции вида. Однако ошибки в мейозе и случайное смешивание генов и хромосом в течение всего процесса, действительно способствуют генетическому разнообразию и приводит к эволюции. Пересечение создает новую комбинацию генов, которые могут кодировать благоприятную адаптацию.

Кроме того, независимый ассортимент хромосом во время метафазы I также приводит к генетическому разнообразию. Гомологичные пары хромосом выстраиваются в линию на этом этапе, поэтому смешивание и сопоставление признаков имеет много вариантов, что способствует разнообразию. Наконец, случайное оплодотворение также может увеличить генетическое разнообразие. Поскольку в конце мейоза II образовывается четыре генетически разных гамета, которые фактически используются во время оплодотворения. По мере того, как имеющиеся признаки смешиваются и передаются, естественный отбор воздействует на них и выбирает наиболее благоприятные адаптации в качестве предпочтительных фенотипов индивидуумов.

Деление клеток и его значение в жизни организма

Любой сложный организм состоит из множества крошечных структурных единиц, обладающих уникальными функциями. Деление позволяет увеличить их количество в несколько раз, обеспечивая тем самым рост организма и его подготовку к дальнейшему размножению. Эти процессы, называемые в биологии митоз и мейоз, проходят особые фазы и выполняют важную роль в жизни живых существ.Биологическое значение деления клеток неоценимо, ведь без него прекратится существование жизни на Земле. Рождение потомства, его развитие, взросление и подготовка к последующему размножению — за эти важные этапы отвечают митоз и мейоз. Деление позволяет восстанавливать поврежденные ткани и органы, лечить механические повреждения покровов и производить замену уже отмершим клеткам.
Все остальные организмы, или прокариоты, такие как бактерии и сине-зеленые водоросли, размножаются путем более простого деления клетки надвое, а также почкованием.Половые клетки и клетки тела не только выполняют различные функции, но и делятся по-разному:

  • Митоз происходит в клетках, отвечающих за рост и восстановление тканей.
  • Половые клетки, отвечающие за дальнейшую передачу генетического материала и размножение организмов, делятся мейозом.

Рис. 1. Фазы митоза

Редукционный этап или первое деление мейоза

Его суть — изменение числа хромосом внутри клетки. То есть из одной диплоидной (2n4c) клетки получаем две гаплоидных (1n2c). Так стоп, откуда 4c? До этого же было 2n2c. Ах да… Сейчас разберемся. 

Интерфаза

Перед вступлением в мейоз клетка проходит через интерфазу. Ей нужно подготовиться к делению — запасти энергетических субстратов (АТФ), синтезировать необходимые белки и удвоить количество молекул ДНК. Еще в интерфазу происходит удваивание центромер.

Рисунок. Хромосомный набор в интерфазу

В интерфазу произошла репликация ДНК — образовалась идентичная цепь. Но эти две цепи, или хроматиды, связаны между собой при помощи центромеры, значит количество хромосом такое же. Итого набор — 2n4c 

Ну вы ведь понимаете, что таким образом реплицируются все 46 хромосом. Просто удобнее показать на паре. Помните, что все 23 пар вступают в мейоз, а не только одна.  После репликации начинается собственно мейоз, а именно его первая фаза: 

Профаза мейоза I

В отличие от митоза состоит из пяти стадий: лептотена, зиготена, пахитена диплотена и диакинез. Она более длительная и здесь протекают важные процессы: конъюгация и кроссинговер. Еще в эту фазу растворяется ядерная оболочка и формируется веретено деления, подробнее об этом ниже.

Лептотена

Какая основная задача у клетки? Правильно, передать генетический материал своим потомкам. Поэтому она начинает упаковывать молекулы ДНК как можно плотнее, она собирает чемодан, ведь не хочет ничего не потерять в пути. Этот процесс называется спирализация или конденсация хромосомы. Клетка так старается, что невидимые раньше в микроскоп хромосомы становятся видимыми. Они похожи на длинные и тонкие нити.  

Зиготена

Здесь происходит конъюгация хромосом — их сближение с образованием бивалентов. Связь обеспечивает синаптонемальный комплекс — он удерживает гомологичные хромосомы рядом это необходимо для запуска кроссинговера на следующем этапе.

Схема. Образование бивалентов.

Связи между хромосомами могут иметь разный вид, но они должны быть. Если в клетке останутся хромосомы, которые не сблизились, то она запускает апотоз и погибает. Клетка — с заботой о будущих поколениях!  

Пахитена

Начинается с еще большей конденсации хромосом, они становятся короче и толще. Но в местах образования синаптонемальных комплексов происходит частичное раскручивание (деконденсация) хромосом.  

Все это для начала кроссинговера — обмена участками ДНК у гомологичных хромосом. Обмен обеспечивает перекомбинацию генетического материала. Если бы мы могли рассоединить хромосомы сразу после кроссинговера, то увидели примерно такую картину: 

Схема. Кроссинговер.

Это лишь схематичное изображение, перекресты могут происходить в самых разных местах , что дает огромную генетическую вариабельность.  

В конце пахитены мостики между хромосомами разрушаются, они начинают отдаляться друг от друга. 

Диплотена

Хромосомы расходятся в области центромер, но остаются связаны между собой в местах кроссинговера — перекрестах или хиазмах. В микроскоп можно увидеть все четыре хроматиды, так сильно они упаковались (спирализовались).

Диакинез

Гомологичные хромосомы расходятся, формируется веретено деления и исчезает ядерная оболочка. Этим завершается профаза мейоза I. Вид клетки примерно такой: 

Схема. Конец профазы мейоза I

Метафаза мейоза I

В этой фазе заканчивается образование веретена деления. Нити веретена прикрепляются к центромерам и начинают притягивать хромосомы, из-за этого они располагаются на экваторе клетки. 

Схема. Клетка в метафазу I

Анафаза мейоза I

Нити веретена деления продолжают тянуть хромосомы на себя — они расходятся к полюсам клетки. На полюсах клетки располагается по 23 хромосомы, но они все еще состоят из двух нитей ДНК.  

Схема. Анафаза мейоза I

Телофаза мейоза I

Завершение редукционного деления. Появляется ядерная оболочка, которая окружает хромосомы. Затем возле ядер появляется перетяжка, которая делит клетку на две части. Образуются две гаплоидные клетки.  

Схема. Конец первого деления мейоза

Что происходит в результате мейоза

С помощью этого процесса происходит:

  1. Появление гамет ( или половых клеток), или гаметогенез.
  2. Образование спор у растения.
  3. Конъюгация (половой процесс) у инфузории. Две инфузории сближаются и осуществляют обмен генетической информации. Между ними в ходе этого процесса образуется небольшой мостик из цитоплазмы, соединяющий двух одноклеточных. Из диплоидного ядра инфузории путем мейоза возникают четыре гаплоидных ядра, одно из них остается и делится митозом, а затем инфузории обмениваются получившимися ядрами.
  4. Происходит изменение наследуемой генетической информации (наследственная изменчивость)

Интерфаза

Как и в митозе, перед делением проходит подготовительная стадия – интерфаза. В ней запускаются важнейшие процессы для того, чтобы клетка могла начать клеточное деление. Клетка синтезирует органические вещества и молекулы АТФ, чтобы во время мейоза ей хватило энергии и строительного материала, удваивает некоторые органоиды и молекулы ДНК.

Вот что именно происходит во время интерфазы.

  • Синтез АТФ. Энергии должно хватить на весь процесс деления, а он непростой и достаточно долгий.
  • Ускорение метаболизма — синтез и накопление органических веществ, будущего строительного материала для новых клеток
  • Репликация ДНК. Образование двух молекул ДНК из одной,  каждая из этих молекул потом уйдет в дочернюю клетку. Удвоение ДНК – центральный процесс интерфазы, теперь в каждой хромосоме располагается по две молекулы, а набор становится 2n4c.
  • Удвоение органоидов. После деления каждая клетка должна получить полный набор органоидов для оптимального функционирования.

После того, как клетка совершит все ритуалы для подготовки, она может приступать к мейозу.

Если хотите лучше понять клеточную теорию и изучить не только мейоз для ЕГЭ по биологии, но и остальные темы, приходите учиться в MAXIMUM! Записывайтесь на консультацию — вы сможете пройти диагностику по выбранным предметам ЕГЭ, поставить цели и составить стратегию подготовки, чтобы получить на экзамене высокие баллы. Все это абсолютно бесплатно!

Митотический цикл, фазы авторепродукции и распределения генетического материала.

Жизненный цикл клетки

— интерфаза

— собственный цикл деления

Растущая неделящаяся клетка отличается от делящихся клеток. Интерфаза длиннее клеточного деления. Типичный жизненный цикл клетки составляет 20 часов, период деления – 1 час. При оптимальных условиях для однотипных клеток продолжительность клеточного цикла (время, необходимое для выполнения точной программы, заложенной в клетке) одинаково. При описании жизненного цикла выделяют несколько фаз. Впервые они были установлены в 1953 году А.Хоуардом и С.Пемгом.

S — фаза синтеза ДНК

G1 – постмитотическая (пресинтетическая) фаза

G2 — постсинтетическая (премитотическая) фаза

М – митоз

После формирования клетки в G1 происходит увеличение объема ядра и цитоплазмы. Синтез белков, синтез РНК, синтез АТФ(30-40% клеточного цикла) усиливается. После G1 фазы начинается S фаза. Происходит точная репликация ДНК и редупликация хромосом. Синтез ДНК происходит по полуконсервативному механизму: каждая цепь ДНК копируется. Синтез происходит по участкам. Существует система, устраняющая ошибки при редупликации ДНК (фоторепарация, дорепродуктивная и пострепродуктивная репарации). Процесс репарации очень долог: до 20 часов, и сложен. Ферменты – рестриктазы вырезают неподходящий участок ДНК и достраивают его заново. Репарации никогда не протекают со 100% эффективностью, если бы это было, Не существовала бы эволюционная изменчивость. Пострепродуктивная репарация происходит в G2 фазе. В G2 фазе(10-20%) происходит синтез белка. Метаболический смысл не ясен. Некоторые клетки в течение длительного времени не выполняют своих функций, в них не протекают метаболические процессы (клетка заклинена в G1или G2 – это G0 фаза – фаза относительного покоя). Для каждой фазы есть свое время. S, G2 не зависят от изменения внешней среды, время постоянно. У человека S фаза – 6-10 часов, G2 фаза – 2-5 часов, G1 фаза по продолжительности варьируется. Если долгая – клетка покоящаяся. Многие клетки (особенно дифференцированные) не способны к делению. Это позволяет им выполнять свои функции в максимальном количестве с максимальной интенсивностью. Особые регуляторные механизмы удерживают клетки в состоянии покоя. Они выполняют все функции, синтезируют белок. Однако многие дифференцированные клетки способны к делению, митоз делится на 2 фазы: собственно митоз и цитокинез.

Митоз делят на 4 фазы: про, мето ана ,тело.

Профаза: хромосомы спирализуются и приобретают вид нитей. Ядрышко разрушается, распадается ядерная оболочка, в цитоплазме уменьшается количество структур шероховатой сети. Резко сокращается число полисом, центриоли клеточного центра расходятся к полюсам клетки, между ними микротрубочки образуют веретено деления.

Метафаза: Заканчивается образование веретена деления, хромосомы выстраиваются в экваториальной плоскости (метафазная пластинка). Микротрубочки веретена деления связаны с кинетохорами хромосом. Каждая хромосома продольно расщепляется на две хроматиды, соединенные в области кинетохора.

Анафаза: Связь между хроматидами нарушается и они перемещаются к полюсам клетки. По завершении движения на полюсах собирается два равноценных полных набора хромосом.

Телофаза: Реконструируется интерфазные ядра дочерних клеток. Хромосомы деспирализуются. Образуются ядрышки. Разрушается веретено деления. Материнская клетка делится на две дочерние.

Биологическая роль митоза: точное, идентичное распределение дочерних хромосом с содержащимся в них наследственным материалом в ядрах. Метафазные хромосомы укомплектованы (как у бактериофага). Они изучаются при медицинском анализе для определения кариотипа. В результате деления возникают 2 клетки с одинаковым набором наследственной информации(2п2с). Продолжительность жизни клетки зависит от гормонального баланса, возраста, условий среды, размера, плоидности, количества ядер, степени дифференциации (чем больше дифференцирована клетка, тем меньше она делится митозом), мало зависит от пола. Митотическая активность в разных клетках приходится на разное время (часто на утренние часы), поэтому плановые хирургические операции проводят утром.

Мейоз и его роль в процессе размножения

Этот способ деления образует уже не две, а четыре клетки, при этом в каждой вдвое уменьшается количество хромосом, но сохраняется генетическая информация. Такой набор хромосом еще называют гаплоидным.
Перед началом мейоза половые клетки удваивают свой исходный материал. Далее начинается профаза 1, или первая фаза первого этапа, которая занимает больше всего времени и является самым сложным периодом во время всего мейоза.Первый этап имеет много сходств с митозом — хромосомы также укорачиваются, затем расходятся к полюсам с образованием новой ядерной оболочки, но с сохранением веретена деления. Иногда после этих процессов наступает очень короткий период интерфазы, но без удвоения количества ДНК. Далее начинается второй этап. Разделяется клеточный центр, ядерная оболочка снова разрушается, а перпендикулярно сохранившемуся веретену деления образуется еще одно. Хромосомы снова делятся и расходятся к полюсам, и в результате получаются четыре новых структурных единицы.Процесс мейоза настолько сложен и интересен, что для более подробного описания может понадобится еще одна статья. Если подытожить кратко, то во время мейоза образуются четыре клетки, но у каждой вдвое уменьшено количество хромосом. Получившиеся клетки готовы к оплодотворению, в результате которого при слиянии материнского и отцовского генетического материала восстанавливается диплоидность, то есть новая клетка будущего организма снова получает удвоенное количество хромосом.

Рис. 3. Амитоз или прямое деление

Ингибиторы циклин-зависимой киназы

Ингиби́тор цикли́н-зави́симой кина́зы (англ. Cdk inhibitor protein, CKI, CDI, CDKI) — белок, блокирующий активность циклин-зависимой киназы отдельно или циклин-зависимой киназы в комплексе с циклином. Обычно сдерживающая активность CKI приурочена к фазе G1 клеточного цикла. К тому же, активация CKI может происходить в ответ на провреждения ДНК или может быть вызвана внеклеточными ингибирующими сигналами.

Большинство эукариотических организмов обладают ингибиторами циклин-зависимых киназ. В животных клетках выделяют два семейства CKI: Cip/Kip и INK4. 

Ингибиторы семейства Cip/Kip блокируют циклин-зависимую киназу в комплексе с циклином, а ингибиторы семейства INK4 блокируют отдельные циклин-зависимые киназы Cdk4 и Cdk6.  В животных клетках ингибиторы циклин-зависимых киназ разделяются на два основных семейства: Cip/Kip и INK4. Семейство Cip/Kip включает ингибиторы CDK белки p21, p27, p57. К основным субстратам Cip/Kip-ингибиторов относятся циклин-киназные комплексы G1/S-Cdk и S-Cdk, отвечающие, соответственно, за G1/S-переход и вступление в S-фазу. Ингибиторы семейства INK4 блокируют циклин-зависимые киназы Cdk4 и Cdk6 регулирующие G1-фазу клеточного цикла.

Рис. Схема ингибирования Cdk6 с участием INK4. Белок INK4 соединяется с циклин-зависимой киназой Cdk6 и смещает аминоконцевую долю киназы примерно на 15° относительно оси вращения. В итоге, деформируется каталитическая область Cdk6, а также снижается способность циклин-зависимой киназы к связыванию циклина.

На протяжении фазы G1 в растущей клетке блокируется активность циклин-зависимых киназ (англ. Cdk) до момента вступления клетки в очередной клеточный цикл. Сдерживание активности Cdk обеспечивается тремя контрольными механизмами. Во-первых, снижением экспрессии генов циклинов. Во-вторых, увеличением степени деградации циклинов. Наконец, к третьему типу сдерживания активности Cdk относятся ингибиторы CKI. Помимо обеспечения стабильного роста клетки в фазе G1 ингибиторы циклин-зависимых киназ участвуют в аресте клеточного цикла на стадии G1 в ответ на неблагоприятные внешние условия. К тому же события клеточного цикла могут блокироваться с участием CKI при повреждениях ДНК.

Ингибиторы циклин-зависимых киназ: Sic1 у почкующихся дрожжей, Rum1 у делящихся дрожжей и Rux у Drosophila — несмотря на структурные различия обладают как минимум тремя сходными функциональными особенностями. Во-первых, основными мишенями данных CKI являются митотические циклин-киназы (англ. M-Cdk) и циклин-киназы синтетической фазы клеточного цикла (англ. S-Cdk). В то же время указанные ингибиторы CKI не могут блокировать циклин-зависимые киназы, обеспечивающие переход клетки из фазы G1 в S-фазу (англ. G1/S-Cdk). Наконец, третьей характерной особенностью всех перечисленных ингибиторов CKI является способ их деактивации. Все они разрушаются после фосфорилирования со стороны активных циклин-зависимых киназ.

Семейство Cip / Kip (p21, p27, p57) регулирует динамику актина посредством ингибирования пути Rho-ROCK-LIMK

Разница между гомологичными и негомологичными хромосомами

Определение

Гомологичные хромосомы: Гомологичные хромосомы относятся к паре хромосом, имеющих одинаковые генные последовательности, каждая из которых происходит от одного из родителей.

Негомологичные хромосомы: Негомологичные хромосомы — это хромосомы, которые не принадлежат к одной паре.

Значимость

Гомологичные хромосомы: Гомологичные хромосомы принадлежат одной и той же паре хромосом, состоящих из материнской и отцовской хромосом.

Негомологичные хромосомы: Негомологичные хромосомы — это хромосомы, принадлежащие разным гомологичным парам.

Типы Аллелей

Гомологичные хромосомы: Гомологичные хромосомы состоят из аллелей одинаковых генов, расположенных в тех же локусах.

Негомологичные хромосомы: Негомологичные хромосомы состоят из аллелей разных генов.

Шаблон сопряжения

Гомологичные хромосомы: Пара гомологичных хромосом при мейозе 1.

Негомологичные хромосомы: Негомологичные хромосомы не спариваются во время мейоза 1.

Состав

Гомологичные хромосомы: Позиции хромосом и положение центромер одинаковы в гомологичных хромосомах.

Негомологичные хромосомы: Негомологичные хромосомы имеют различную длину плеча хромосом и положение центромер.

последствия

Гомологичные хромосомы: Части гомологичных хромосом могут быть заменены во время рекомбинации.

Негомологичные хромосомы: Части негомологичных хромосом могут быть заменены во время транслокаций.

Примеры

Гомологичные хромосомы: 22 аутосомных хромосомы гомологичны у человека.

Негомологичные хромосомы: Х и Y хромосомы негомологичны.

Заключение

Гомологичные и негомологичные хромосомы — это два типа хромосом, обнаруженные в геноме. Пара гомологичных хромосом при мейозе. Гомологичная пара состоит из аллелей одинаковых генов в одних и тех же локусах в обеих хромосомах. Но, негомологичные хромосомы состоят из аллелей разных генов. Основное различие между гомологичными и негомологичными хромосомами заключается в отношении аллелей.

Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Дружный центр
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: