Центриоли в клетках высших форм отсутствуют у кого?

Содержание:

В центриолипредставляют собой цилиндрические клеточные структуры, состоящие из кластеров микротрубочек. Они состоят из протеина тубулина, который содержится в большинстве эукариотических клеток.

Связанная пара центриолей, окруженная бесформенной массой плотного материала, называемого перицентриолярным материалом (ПКМ), составляет структуру, называемую центросомой.

Функция центриолей состоит в том, чтобы управлять сборкой микротрубочек, участвовать в организации клетки (положение ядра и пространственное расположение клетки), формировании и функционировании жгутиков и ресничек (цилиогенез) и делении клеток (митоз и мейоз).

Центриоли находятся в клеточных структурах, известных как центросомы в клетках животных, и отсутствуют в клетках растений.

Дефекты в структуре или количестве центриолей в каждой клетке могут иметь серьезные последствия для физиологии организма, вызывая, среди прочего, изменения в реакции на стресс во время воспаления, мужского бесплодия, нейродегенеративных заболеваний и образования опухолей.

Центриоль представляет собой цилиндрическую конструкцию. Пара связанных центриолей, окруженных бесформенной массой плотного материала (называемого «перицентриолярным материалом» или ПКМ), образуют составную структуру, называемую «центросомой».

Они считались несущественными до тех пор, пока несколько лет назад не был сделан вывод, что они являются основными органеллами в проведении деления и дупликации (митоза) в эукариотических клетках (в основном у людей и других животных).

Центросомы в иммунологическом синапсе

Центросома играет очень важную роль в структуре и функции иммунологического синапса (СИ). Эта структура формируется за счет специализированных взаимодействий между Т-клеткой и антиген-презентирующей клеткой (АРС). Это межклеточное взаимодействие инициирует миграцию центросомы к SI и ее последующее соединение с плазматической мембраной..

Сцепление центросомы в СИ подобно тому, что наблюдается при цилиогенезе. Однако в этом случае, инициирует сборку ресничек, но участвует в организации СИ и секреции цитотоксических везикул, чтобы лизировать клетки-мишени, что является ключевым органом в активации Т-клеток.

Центросома

Пара центриолей, расположенных рядом с ядром и перпендикулярно друг другу, являются «центросомой». Одна из центриолей известна как «отец» (или мать). Другой известен как «сын» (или дочь; он немного короче, и его основание прикреплено к основанию матери).

Проксимальные концы (в месте соединения двух центриолей) погружены в белковое «облако» (возможно, до 300 или более), известное как центр организации микротрубочек (MTOC), поскольку он обеспечивает белок, необходимый для построения микротрубочки.

MTOC также известен как «перицентриолярный материал», и он заряжен отрицательно. И наоборот, дистальные концы (вдали от соединения двух центриолей) заряжены положительно.

Пара центриолей вместе с окружающими их MTOC известны как «центросомы».

Основные функции

Главная функция клеточного центра — формирование веретена деления. Это важнейшая структура, которая возникает во время митотического деления клетки. Процесс происходит в несколько этапов:


Самоудвоение центросомы.
Расхождение центриолей к разным полюсам клетки.
Формирование цепи из микротрубочек. Один конец нити прикрепляется к хромосомам.
Равномерное распределение наследственного материала по дочерним клеткам.
Одиночная центриоль делает восстановление второй части.

Кроме того, центросома принимает участие в образовании нескольких важных элементов: микротрубочек, ресничек и жгутиков. Белковые структуры формируют цитоскелет клетки. Жгутики — это мембранные отростки, которые характерны как для растительных, так и для животных клеток. Они необходимы для самостоятельного перемещения специализированных структур в жидкой среде. Реснички выполняют рецепторную функцию. Структура органеллы и функции клеточного центра перечислены в таблице.

Элемент Строение Значение
Центриоль Полый цилиндр, состоящий из 9 триплетов Образование микротрубочек, равномерное распределение генетического материала между новыми клетками
Сателлиты Придатки, прикреплённые к центриоли материнской направленности Сборка веретена деления
Микротрубочки Белковые нити, расходящиеся по периферии клетки Формирование веретена деления и расхождение хромосом к разным полюсам
Матрикс Субстанция без выраженной структуры вокруг центросомы Сборка микротрубочек

Деление клеток характерно для всех сложных организмов. Но центросома участвует в митозе только в организмах животных и простейших растений. У остальных живых существ эта органелла отвечает за формирование внутриклеточных структур.

Веретено деления и химический анализ

Ранние опыты биологов позволили определить, что функции клеточного центра напрямую связаны с его строением. Присутствие двух центриолей, которые противоположно расположены друг к другу, и нитей позволяет проводить равномерное распределение хромосом. Последние соединены между собой микротрубочками и закрепляются на полюсах материнской клетки.

Благодаря этому у новых клеток такое же количество хромосом, как и у материнских. Но в случае с процессом мейоза их вдвое меньше. Особый интерес вызвало наблюдение того факта, что строение центросомы всё время изменяется. Также оно коррелятивно взаимосвязано с различными жизненными циклами клетки.

Среди вспомогательных элементов выделяют такие:

  1. Придаточные частицы центриолей.
  2. Перицетриолярные сателлиты.

В состав обоих видов входит ценексин и мирицетин. Также существует белки, с помощью которых осуществляются обменные процессы в органоиде. К ним относятся фосфатазы и киназы — специальные пептиды, отвечающие за возникновение и активизацию молекулы-затравки. Именно она влияет на развитие и выработку радиальных микронитей.

Ссылки

  1. Бориси, Г., Хилд, Р., Ховард, Дж., Янке, К., Мусаккио, А., и Ногалес, Э. (2016). Микротрубочки: 50 лет спустя после открытия тубулина. Nature Reviews Molecular Cell Biology, 17 (5), 322-328.
  2. Бухвалтер, Р. А., Чен, Дж. В., Чжэн, Ю., и Мегро, Т. Л. Центрирование клеток в делении, развитии и заболеваниях. eLS.
  3. Гамбаротто, Д., и Басто, Р. (2016). Последствия численных центросомных дефектов в развитии и болезни. В цитоскелете микротрубочек (стр. 117-149). Springer Вена.
  4. Хьюстон, Р. Л. (2016). Обзор активности центриолей и противоправной активности во время деления клеток. Достижения в области бионауки и биотехнологии, 7 (03), 169.
  5. Инаба, К., и Мизуно, К. (2016). Дисфункция сперматозоидов и цилиопатия. Репродуктивная медицина и биология, 15 (2), 77-94.
  6. Килинг, Дж., Циокас, Л., и Маски, Д. (2016). Клеточные механизмы контроля длины ресничек. Ячейки, 5 (1), 6.
  7. Лодиш, Х., Берк, А., Кайзер, К.А., Кригер, М., Бретчер, А., Плоег, Х., Амон, А., Мартин, К.С. (2016). Молекулярная клеточная биология. Нью-Йорк: В. Х. Фриман и компания.
  8. Матаморос, А. Дж., И Баас, П. В. (2016). Микротрубочки в здоровье и дегенеративных заболеваниях нервной системы. Бюллетень исследований мозга, 126, 217-225.
  9. Пеллегрини, Л., Ветцель, А., Гранно, С., Хитон, Г., и Харви, К. (2016). Обратно к канальцу: динамика микротрубочек при болезни Паркинсона. Клеточные и молекулярные науки о жизни, 1-26.
  10. Шеер, У. (2014). Исторические корни исследования центросом: открытие предметных стекол микроскопа Бовери в Вюрцбурге. Фил. Пер. Р. Soc. B, 369 (1650), 20130469.

Строение центриолей клеточного центра

В фундаменте основы мелкоструктурных центриолей лежат 9 комплексов и три трубочки, образовывая в следствии образование цилиндрической формы. Такая структура имеет в себе некоторые особенности. Самая первая трубочка располагается в центре цилиндрического образования и состоит из соединений белка, представляющих собой полипептидный комплекс. Остальные две плотно расположены рядом с наименьшим количеством полипептидов. Все трубочки находятся в субстанции аморфной разновидности.

Помимо трубочек они имеют выросты, имеющие разное направление. Одни закреплены к триплетам, расположенным рядом, а другие стремятся краями к цилиндрическому образованию.

Что такое клеточный центр, значение открытия

Клеточный центр (центросома) — это немембранная органелла в клетках эукариот.

Явление центросомы было описано в 1870-х гг практически одновременно несколькими учеными:

  • Вальтером Флеммингом;
  • Оскаром Гертвигом;
  • Эдвардом ван Бенеденом.

Позднее Эдвард ван Бенеден и Теодор Бовери сумели параллельно друг с другом установить, что центросферы не исчезают в окончании процесса митоза, а сохраняются в клетке, которая находится в интерфазе, при этом зачастую обнаруживаются строго в геометрическом центре.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут

Со временем знания о центросоме, ее устройстве и функциях в биологии прибавлялись. Это отражалось также на том, какие названия присваивали клеточному центру. Так, например, в качестве изначального понятия использовался термин «центросфера», затем — «центральные корпускулы». Позднее был введено в оборот определение «центросома», но окончательно оно прижилось лишь в середине XX века, когда была определена структура клеточного центра.

Все ли клетки содержат клеточный центр

Несмотря на то что центросома выполняет довольно важную функцию, она присутствует в клетках далеко не у всех организмов. Так, ее обнаруживают чаще всего в клетках животных, тогда как высшие растения, низшие грибы и ряд простейших не обладают ею.

Строение и роль центриолей

Центриоли — немембранные органоиды эукариотических клеток, причем их нет в клетках высших растений, ряда грибов и некоторых животных.

Каждая центриоль состоит из девяти триплетов тубулиновых микротрубочек.

Триплеты располагаются по окружности цилиндра длиной около 0,3 мкм и диаметром около 0,1 мкм.

В каждом триплете микротрубочки отличаются.

Одна из них состоит из большего числа протофиламентов, а две другие представляют собой как бы полусферы, присоединенные вторая к первой, а третья ко второй.

В паре центриоли располагаются под прямым углом друг к другу. В интерфазе находятся в центре клетки и связаны либо с ядром, либо с комплексом Гольджи.

Клеточный центр является главным центром организации микротрубочек, инициирует их рост.

Здесь же образуются жгутики и реснички.

Клеточный центр выполняет функцию организации веретена деления. Центриолей нет у растений, но веретено у них образуется. Поэтому считается, что веретено образует именно клеточный центр, а не входящие в его состав центриоли. Вероятная функция центриолей — ориентация веретена так, чтобы хромосомы расходились именно к полюсам.

Перед делением каждая центриоль из пары отходит к своему полюсу.

От центриолей, находящихся на полюсах, вырастают микротрубочки. Они прикрепляются к центромерам хромосом и обеспечивают равноценное распределение наследственного материала между дочерними клетками.

В новых клетках возле каждой центриоли возникает новая – дочерняя.

Однако бывают другие варианты: вторая центриоль пары может появляться раньше, или в клетке может быть несколько пар. Кроме того, центриоли образуют базальные тельца, представляющие собой их видоизменения, находящиеся у основания жгутиков и ресничек.

Вопрос 1. Каковы функции клеточного цент­ра?

Клеточный центр выполняет функцию формирования внутреннего скелета клет­ки (цитоскелета). Цитоскелет представля­ет собой сеть микротрубочек, пронизывающих цитоплазму, поддерживающих форму клетки, обеспечивающих движе­ние органоидов клетки, а также работу специализированных органоидов движе­ния — ресничек и жгутиков.

Клеточный центр обеспечивает также и нормальное деление клетки.

Центриоли клеточного центра расходятся к полюсам делящейся клетки и образуют веретено деления, благодаря которому из одной ма­теринской впоследствии образуются две дочерние клетки.

Центриоли представлены цилиндрика­ми, образованными множеством микро­трубочек.

Центриоли, расположенные под прямым углом друг относительно друга, находятся вблизи от ядра и образуют кле­точный центр.

Вопрос 2.

Каковы функции центриолей в клетке?

Центриоли входят в состав клеточного центра и обеспечивают нормальное деле­ние клетки. Перед ее делением центриоли расходятся к полюсам, образуя веретено деления клетки.

Вопрос 3. В чем сходство и различие между ресничками и жгутиками?

У органоидов движения клетки много общего. Реснички и жгутики являются специализированными органоидами дви­жения клетки, они образованы микротру­бочками.

Митохондрии

Митохондрии — органеллы, характерные для большинства клеток растений. Имеют изменчивую форму палочек, зёрнышек, нитей. Открыты в 1894 году Р. Альтманом с помощью светового микроскопа, а внутреннее строение было изучено позднее с помощью электронного.

Строение митохондрии

Митохондрии имеют двухмембранное строение. Внешняя мембрана гладкая, внутренняя образует различной формы выросты — трубочки в растительных клетках. Пространство внутри митохондрии заполнено полужидким содержимым (матриксом), куда входят ферменты, белки, липиды, соли кальция и магния, витамины, а также РНК, ДНК и рибосомы. Ферментативный комплекс митохондрий ускоряет работу сложного и взаимосвязанного механизма биохимических реакций, в результате которых образуется АТФ. В этих органеллах осуществляется обеспечение клеток энергией — преобразование энергии химических связей питательных веществ в макроэргиеские связи АТФ в процессе клеточного дыхания. Именно в митохондриях происходит ферментативное расщепление углеводов, жирных кислот, аминокислот с освобождением энергии и последующим превращением её в энергию АТФ. Накопленная энергия расходуется на ростовые процессы, на новые синтезы и т. д. Митохондрии размножаются делением и живут около 10 дней, после чего подвергаются разрушению.

Функции

Функции центриолей еще мало изучены. Можно было бы предположить, что они участвуют в образовании веретена деления, однако они формируются и в клетках растений и грибов.

Ученые предполагают, что центриоли играют определенную роль в пространственной ориентации веретена деления по отношению к полюсам клетки. Микротрубочки в составе этих органоидов выполняют опорную функцию. Возможно, по аналогии с белковыми структурами, формирующими цитоскелет клетки, микротрубочки также служат для транспортировки определенных веществ.

В непосредственной близости от материнских центриолей находятся фокусы схождения микротрубочек в виде плотных мелких телец. С их помощью осуществляется «сборка» микротрубочек, служащих основой клеточного каркаса.

Функции центриолей в делении клеток

Центриоли расположены за пределами, но вблизи ядра клетки. Они реплицируются во время интерфазы, до начала митоза и мейоза в клеточном цикле.

В профазе каждая центросома с центриолями мигрирует к противоположным полюсам клетки. На каждом конце клетки расположена одна пара центриолей. Митотическое веретено первоначально появляется в виде к структур, называемых астрами, которые окружают каждую пару центриолей. Микротрубочки образуют волокна веретена деления, простирающиеся от каждой центросомы, тем самым разделяя пары центриолей и удлиняя клетку.

В метафазе центриоли помогают позиционировать полярные волокна, поскольку они простираются от центросомы и располагают хромосомы вдоль метафазной пластины.

В анафазе полярные волокна, связанные с хромосомами, сокращаются и разделяют сестринские хроматиды (реплицированные хромосомы). Отделенные хромосомы вытягиваются к противоположным концам клетки полярными волокнами, простирающимися от центросомы.

В телофазе волокна веретена диспергируются по мере того, как хромосомы опираются на отдельные новые ядра. После цитокинеза каждая дочерняя клетка содержит одну центросому с одной центриольной парой.

Описание и характеристика

В конце XIX века открыли новые частицы клетки, которые назвали центросомами. Также учёные обнаружили центры, где были расположены крошечные структуры, — центриоли. Впервые удалось заметить эти образования в растительных тканях. Более подробно изучить их строение получилось только спустя 60 лет, когда изобрели электронные микроскопы. Хотя ответов на многие вопросы до сих пор нет.

Центриоли представляют собой специальную безмембранную структуру с удвоением отростков. Эти микроскопические образования являются частью ядра клетки. Что происходит внутри, достаточно сложно рассмотреть даже в электронный микроскоп. Наличие центросом характерно для животных, некоторых грибов и простейших растений, например, папоротников и мхов.

Биологов очень заинтересовал тот факт, что наличие органоида необязательно. В итоге обнаружилась необходимость протекания процесса мейоза и митоза в клетках большинства видов животных, человека и водорослей. Для этого требуется клеточный центр.

При помощи митоза происходит деление у соматических клеток, а половые используют способ мейоза. В обоих случаях обязательно необходима центросома. Центриоли расходятся к полюсам воспроизводимой клетки, а также обеспечивают натяжение нитей деления. Благодаря этому происходит расхождение хромосом, которые закреплены на противоположных сторонах материнской клетки и на рассматриваемых нитях.

Исследования под мощным микроскопом помогли выявить функции и характеристики центра, а также его особенности строения. В центросому входят плотные и очень мелкие образования с расходящимися микротрубочками. Эти тельца называются центриолями.

Клеточный центр можно увидеть только на интерфазном этапе жизненного цикла клетки. Возле мембраны ядра чаще всего находится 2 микроскопических цилиндра. Каждый состоит из белковых трубочек, которые собираются по 3 штуки и образуют так называемые триплеты. При помощи этих структур создаётся поверхность центриоли.

Органеллы клетки

Более понятно будет строение клетки и сложность этого базового компонента, если детально разобраться во всех элементах ее структуры.

Ядро

Ядро — это самая значительная часть зеленых организмов. Именно на него возлагается вся ответственность за любые процессы, происходящие внутри ячейки. Уникальная роль этой органеллы в том, что посредством нее передается наследственная информация.
Привычно одна ячейка имеет только одно ядро, хотя были зафиксированы и клетки, в которых насчитывалось несколько ядер. Диаметр этого компонента варьируется в пределах 5-20 мкм. По форме центральный элемент может быть сферическим, дисковидным, удлиненным. Внешняя поверхность вскрыта ядерной оболочкой, которая отграничивает эту органеллу от других. Ее , пектин, лигнин и белки. Нет стабильности и в отношении расположения ядра внутри. В молодой клетке эта органелла находится ближе к центру. По мере взросления смещается к стенкам, и ядро замещается вакуолью.Химическая основа ядра — комбинация белков и нуклеиновых кислот. Обмен веществ осуществляется посредством тонопласта — тонкой пленочной мембраны. Остальное внутреннее пространство клетки вокруг ядра заполнено цитоплазмой — бесцветным веществом высокой степени вязкости. В ней же содержатся и остальные органоиды.

Аппарат Гольджи

накопления и выведения ненужных веществ. Форма его может быть различной — палочковой, дисковой или в виде зернышка.
Рис. 2 Лизосомы

Лизосомы

Лизосомы — это органоиды, которые не являются самостоятельными компонентами клеток. Они продуцируются в процессе функционирования комплекса Гольджи и эндоплазматической сети. Под микроскопом можно их легко узнать, так как это — пузырьки, различия между которыми заключаются только в размерах. Внутри пузырьков могут присутствовать различные компоненты — липазы, нуклеазы, протеазы.Главная функция этих клеточных включений — расщепление и преобразование поступивших в ячейку питательных элементов и их выведение. Таким образом, можно отметить сходство характеристики с основным назначением самостоятельной органеллы — комплекса Гольджи.

Микротрубочки

фибриллярной структуры прямолинейной формы, диаметром около 24 нм и с толщиной стенок не более 5 нм. По своему назначению они имеют сходство с мембраной, но размеры их меньше, и они могут формировать довольно сложные образования, к примеру, веретено деления ячейки для репродуктивной деятельности.Присутствуют микротрубочки в составе более сложных органоидов — центриолей и базальных телец, а также из них складывается структура ресничек и жгутиков.

Вакуоль

Вакуоль — это внутренняя полость клетки, наполненная соком. Ее размеры увеличиваются по мере развития растения, и, соответственно, роста клетки. Основу химического состава вакуоли представляют минеральные соли и органические вещества, сахара, белки, ферменты и пигменты.

Пластиды

Пластиды — это мелкие элементы клетки. Различают и те, что имеют в своем химическом составе различные пигменты. Самые узнаваемые — зеленые, которые принимают непосредственное участие в процессе фотосинтеза.

Хлоропласты

Этикомпоненты клетки имеют очень высокую чувствительность к свету за счет пигментов хлорофиллов. Как раз на них и приходится реакция фотосинтеза.

Хромопласты

В составе хромопластов присутствуют металлические соли и пигменты. Благодаря именно этим органеллам листва растений, их соцветия и плоды имеют ту или иную окраску.
Рис. 3 Строение митохондрии

Митохондрии

Благодаря митохондриям клетки, а соответственно и растения, способны дышать и развиваться. Эти органоиды также принимают активное участие в обмене веществ и образовании АТФ.

Эндоплазматическая сеть (ЭПС)

Впервые этот органоид был обнаружен в 1945 г., когда К. Портер проводил свои исследования клеток с помощью электронного микроскопа. Это — полноценная система полостей и канальцев с хорошо развитым разветвлением. За счет наличия такого комплекса во много раз увеличивается полезная внутренняя поверхность клетки, что обеспечивает стабильному протеканию всех процессов, необходимых для жизни растения.Также к основному назначению ЭПС относят такие функции:

  • синтезирование белковых соединений;
  • транспортировка белков;
  • синтез полисахаридов и жиров.

Несмотря на свои мелкие размеры, растительная клетка представляет собой довольно сложный организм. И именно она и является базовой основой всех биологических организмов, обеспечивая их рост за счет своего деления.

Строение клетки

Животные и растительные клетки имеют схожее строение. Внутри клетка заполнена цитоплазмой, в которой «плавают» внутренние компоненты.

Главный орган клетки — ядро, покрытое пористой оболочкой. Сквозь поры в ядро и обратно поступают питательные вещества и отходы. Ядро заполнено соком, в котором находятся ниточки молекул ДНК и ядрышко

Ядро — главнокомандующий, оно управляет всеми процессами внутри клетки и заведует важной генетической информацией

Помимо ядра, вакуолей и цитоплазмы внутри клетки присутствуют и другие органоиды. И в животных, и в растительных клетках есть вакуоли — пузырьки, заполненные клеточным соком. Они отвечают за хранение питательных веществ, обезвреживание ядов и вывод отходов. Митохондрии — производители энергии. Они помогают клетке дышать, размножаться, расти. Аппарат Гольджи отвечает за производство, хранение и доставку веществ в разные части клетки. Рибосомы в ответе за выработку белка — строительного материала. Лизосомы, мешочки с ферментами, которые ускоряют процессы в организме, переваривают пищу. Пероксисомы тоже содержат ферменты. Они нейтрализуют вредные вещества и разрушают жиры.

У растительных и животных клеток есть и отличия
  • В растительной клетке присутствуют пластинки зеленого цвета, хлоропласты. Они помогают клетке получать питание из солнечных лучей. Животные клетки не умеют самостоятельно вырабатывать «еду», им приходится добывать питательные вещества из съеденной пищи. Исключение из мира животных — микроорганизмы жгутиконосцы, которые днем вырабатывают питательные вещества на свету, а ночью добывают готовую пищу.
  • Животные клетки имеют округлую форму. Их оболочка пластичная и гибкая, что позволяет им растягиваться и изменять внешний вид. Прямоугольные клетки растений защищены менее податливой стенкой, которая не дает им трансформироваться.
  • Отличаются клетки и за счет вакуолей. У растений они крупные, но немногочисленные, у животных, наоборот, мелкие, но в клетке содержится целая россыпь. Растительные вакуоли предназначены для запаса питательных веществ, животные отвечают за переваривание пищи и сокращение. А питательные вещества животной клетки хранятся в цитоплазме.
Рейтинг
( Пока оценок нет )
Editor
Editor/ автор статьи

Давно интересуюсь темой. Мне нравится писать о том, в чём разбираюсь.

Понравилась статья? Поделиться с друзьями:
Дружный центр
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: